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ABSTRACT: To improve students’ learning performance through review learning activities, we developed a 

personalized intervention tutoring approach that leverages learning analysis based on artificial intelligence. The 

proposed intervention first uses text-processing artificial intelligence technologies, namely bidirectional encoder 

representations from transformers and generative pretrained transformer-2, to automatically generate Python 

programming remedial materials; subsequently, learning performance prediction models constructed using 

various machine learning methods are used to determine students’ learning type, enabling the automatic 

generation of personalized remedial materials. The participants in this study were 78 students from a university 

in northern Taiwan enrolled in an 8-week Python course. Students in the experimental (n = 36) and control (n = 

42) groups engaged in the same programming learning activities during the first 5 weeks of the course, and they 

completed a pretest of programming knowledge in Week 6. For the review activity in Week 7, the 36 students in 

the experimental group received personalized intervention, whereas those in the control group received 

traditional class tutoring. We examined the effect of the self-regulated learning and personalized intervention on 

the learning performance of students. Compared with the traditional class tutoring, the personalized intervention 

review activity not only helped students obtain higher learning performance but also prompted greater 

improvements in the following learning strategies: rehearsal, critical thinking, metacognitive self-regulation, 

effort regulation, and peer learning. We also observed that students’ rehearsal and help-seeking learning 

strategies indirectly affected learning performance through students’ note-taking in the provided e-book.    
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1. Introduction 
 

With its roots in learning analysis, precision education aims to improve students’ learning performance through 

the four steps of diagnosis, prediction, treatment, and prevention, drawing inspiration from precision medicine 

(Lu et al., 2018). Personalized intervention involves formulating specific measures according to the needs of 

each student, guiding students to overcome learning difficulties, helping students confront high risks, and 

supporting students in improving their learning performance (Zhang et al., 2020). Thus, the objective of both 

precision education and personalized intervention is designing unique interventions for different students.  

 

According to the US Department of Education (2010), personalized learning refers to teachers customizing 

learning objectives, teaching methods, and teaching content (and the sequence in which it is presented) according 

to the needs of learners and subsequently guiding students to engage in meaningful learning activities. 

Personalized learning aims to improve students’ learning by meeting their diverse needs, and research has 

indicated that students learn more effectively when teaching meets their needs (Benedict, 2010; Lin et al., 2016). 

Thus, personalized learning can be regarded as an alternative to traditional models because it focuses on 

providing guidance and addressing knowledge gaps on the basis of students’ current level of understanding 

(Johnson & Samora, 2016); notably, teachers have been increasingly adopting this approach in remedial tutoring 

for students (Foshee et al., 2016; Hsieh et al., 2013; Lin et al., 2016). Leveraging rich and diverse learning data, 

artificial intelligence and machine learning techniques can be used to analyze and predict student learning 

performance or to reveal their learning patterns at an early stage (Lu et al., 2018; Marbouti et al., 2016). 

Personalized learning based on learning analytics does not merely involve the assessment of learning and 

performance, but it can also improve learner engagement in the learning process (Bernacki et al., 2021). Siemens 

and Gašević (2012) defined learning analytics as measuring, collecting, analyzing, and reporting data about 
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learners and their contexts to understand and optimize learning and the contexts in which it occurs. Personalized 

intervention applied in after-class tutoring has developed into an effective approach to improving students’ 

learning effectiveness (Zhang et al., 2020).  

 

In personalized intervention, students’ learning status in terms of target concepts must first be predicted or 

identified; subsequently, they are provided with personalized learning adjustment suggestions. The personalized 

intervention proposed in this study first determines the students’ mastery of concepts and then provides students 

with relevant remedial materials according to their learning status to help them review what they have learned, 

thereby improving students’ conceptual proficiency. We used natural language processing (NLP) technologies, 

namely bidirectional encoder representations from transformers (BERT) (Devlin et al., 2018) and generative 

pretrained transformer (GPT-2) (Radford et al., 2018), for the generation of personalized intervention remedial 

learning content according to the status of students. Because self-regulated learning (SRL) can be used to explore 

students’ cognition during the programming process (Zimmerman, 1989; Zimmerman, 1990), we used the 

learning strategy subscale of the motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991; Pintrich 

et al., 1993) to group students; subsequently, we explored the impact of the personalized intervention on students 

with different learning strategies. The following research questions guided this study: 

• RQ1: For different learning concepts, what are the key learning features that affect students’ mastery of 

concepts? 

• RQ2: Can personalized intervention tutoring improve students’ learning performance to a greater extent than 

traditional classroom tutoring? 

• RQ3: Can learning strategies and online learning features effect on learning performance? 

• RQ4: What is the impact of personalized intervention tutoring on the learning performance of students with 

different learning strategy abilities? 

 

 

2. Literature review 
 

2.1. SRL in a programming course 

 

In SRL, learners examine their learning behavior and make adjustments to achieve learning goals and tasks. 

According to Zimmerman (1990), the first component of SRL is the student’s metacognitive strategies for 

planning, self-monitoring, and controlling learning at various stages of the learning process. The second 

component of SRL is students’ motivation and emotional processes for engaging in learning tasks (Pintrich, 

1999; Zimmerman, 1989); for this component, researchers can use variables such as self-efficacy, task value, 

intrinsic goal orientation, and test anxiety as assessment dimensions. The third component of SRL is student 

behavioral processes, such as how students create and structure their learning environment (Zimmerman, 1989). 

The preceding description highlights that SRL is an active and constructive process by which students set goals 

for their learning and attempt to monitor, regulate, and control their cognition, motivation, and behavior in the 

learning process (Pintrich, 2000). 

 

Problem-solving is a key skill required for the 21st century (Lai & Hwang, 2014), and computer programming 

has emerged as a popular subject for developing such skills. Because of the prominence of computer technology 

in modern society, the programming process is increasingly being used in educational settings to cultivate 

students’ problem-solving ability. In the programming process, the problem is the main focus and the goal is to 

solve the problem through computer programming. Programming for problem-solving has become an essential 

ability for learners to construct the knowledge needed to perform new tasks; in this learning process related to 

new tasks, we can consider students’ self-adaptive learning to observe their cognitive construction processes. In 

SRL, student cognition is the main element, and the relationship between students’ metacognition, motivation, 

and behavioral participation as they complete learning tasks can be explored. Thus, in the learning process of 

programming for problem-solving, we can use SRL and adopt students’ cognition as the main observation; we 

can then further explore each student’s learning status in the programming process. In recent years, some 

researchers have begun to guide students to learn programming languages through SRL and investigate the 

correlation between students’ SRL ability and learning performance (Cheng, 2021; Song et al., 2021).  

 

 

2.2. Personalized intervention for at-risk students   

 

In the field of teaching, at-risk students can be helped in a timely manner through early identification. Artificial 

intelligence technology and machine learning are increasingly being used to construct models for identifying at-

risk students or learning patterns in educational settings. These models have mostly been used to predict student 
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learning trends, student performance levels (Villagrá-Arnedo et al., 2017), whether students will pass or fail 

(Huang et al., 2020), and their academic scores (Lu et al., 2018). Most predictive models adopt machine learning 

methods, such as decision trees, linear regression, and support vector machines. These models can be used to 

identify at-risk students and determine when human intervention is needed as well as to provide assistance to 

such students. Although models can be used to identify at-risk students, the tutoring of these students to help 

improve their academic performance is still handled by teachers. Research on automatic generation of 

personalized learning suggestions for students with different learning trends, with the aim of improving the 

subsequent learning performance of at-risk students is limited. Therefore, the development of interventions for 

at-risk students has become a popular topic.  

 

Personalized intervention refers to the provision of unique interventions according to the distinct learning 

characteristics and learning states of students (Zhang et al., 2020). In early education research, most personalized 

interventions were based on teachers’ observations of students. Because of the effort involved, teachers cannot 

implement personalized interventions for all students in a given class. Fortunately, learning analysis based on big 

data analysis technology has grown rapidly, thereby facilitating the development of personalized interventions. 

For example, on the basis of learners’ learning styles and cognitive abilities, Yi et al. (2017) implemented 

personalized interventions in an online learning environment; the intervention involved sending notification 

messages and emails to all students in the classroom. Most current personalized interventions send personalized 

learning messages according to students’ personal characteristics (e.g., learning styles); however, personalized 

interventions can also be adopted for remedial materials aimed at addressing learning difficulties. Therefore, we 

developed a system that provides personalized remedial learning material content according to students’ learning 

proficiency.  

 

 

2.3. Automatic generation of remedial materials in personalized intervention 
 

After learning, students may still have gaps in their understanding of certain concepts. Remedial materials are 

designed to help students fill those gaps in a timely manner (Bauman & Tuzhilin, 2018). Big data–based learning 

analysis is increasingly being adopted to provide students with personalized remedial materials to help them 

master subject content (Bauman & Tuzhilin, 2018; Bethard et al., 2012). Although the use of personalized 

remedial materials is receiving growing research attention, related research has continued to rely on teachers to 

generate such materials in advance to address students’ learning difficulties. The automatic generation of 

remedial teaching materials for personalized intervention would thus be of considerable use to educators.  

 

NLP toolkits for text processing have become a popular research topic. Novel NLP tools introduced recently 

include the Natural Language Toolkit (NLTK), TextBlob, and FLAIR. In NTLK, before the text is applied for 

different tasks, text processing, such as tokenization, tagging, parsing, is performed (Bird, 2006). The main goal 

of TextBlob is to calculate the polarity and subjectivity of text. FLAIR allows the application of different 

models, such as named entity recognition and part-of-speech tagging, to user tasks (Akbik et al., 2019). 

However, the aforementioned three toolkits are used mostly for sentiment analysis and text classification; they 

are not suitable for applications involving automatic text content generation.   

 

Models pretrained on large corpora can learn common language representations from large amounts of unlabeled 

textual data; these language representations can then be used for applications in other natural language tasks, 

thereby avoiding training new models from scratch (Lu et al., 2021; Yang, 2021). Users only need to fine-tune 

the pretrained NLP model to be able to complete various downstream NLP tasks, with no need for users to 

design new neural network architectures for different tasks, thus substantially improving the training efficiency 

(Radford et al., 2018). The BERT pretrained model allows for the intuitive building of the model pipeline and for 

modeling many downstream tasks. Thus, researchers only need to input specific inputs and outputs into BERT; 

the model then fine-tunes all parameters during the training process (Devlin et al., 2018). This mechanism 

enables researchers to represent the steps of BERT in a more interpretable and localizable manner (Tenney et al., 

2019). Therefore, we used two well-known pretrained models—BERT (Devlin et al., 2018) and GPT (Radford et 

al., 2018)—to automatically generate remedial materials.  
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3. Methodology 
 

3.1. Participants and instruments 

 

We conducted an 8-week experiment beginning in March 2022 to investigate whether the proposed personalized 

intervention tutoring could improve students’ reviewing performance as they learned Python. The study 

participants are 78 students in two classes at a university in northern Taiwan; the two classes will be assigned as 

an experimental class and a control class. There were 36 students in the class of the experimental group, 

including 16 males and 20 females; the class of the control group consisted of 42 students, consisting of 28 males 

and 14 females. The only difference between the two groups was that, one week before the test, the students in 

the experimental group reviewed Python knowledge through personalized intervention tutoring, whereas those in 

the control group received traditional classroom tutoring.  

 

The MSLQ is commonly used to measure students’ self-regulation ability; it comprises two subscales—learning 

motivation and learning strategy—with items being rated on a five-point Likert scale (Pintrich, 1991, Pintrich et 

al., 1993). Thus, the instructor measured students’ self-regulation ability by using the learning strategy subscale 

in the MSLQ. The learning strategy subscale of the MSLQ contains a total of 31 items on rehearsal (4 items), 

elaboration (6 items), organization (4 items), critical thinking (5 items), metacognitive self-regulation (12 items), 

time and study environment (8 items), effort regulation (4 items), peer learning (3 items), and help seeking (4 

items). For the experimental group, the Cronbach reliability coefficients for our data in the pretest and posttest 

were .909 and .912, respectively. For the control group, these values were .884 and .948, respectively.  

 

To reveal students’ Python programming background knowledge, we conducted a programming knowledge test 

during the first week of the course. Only 41 and 29 students in the control and experimental groups, respectively, 

completed this test. No significant difference was observed between the experimental and control groups (Table 

1); that is, the students in the two groups had substantial and comparable background knowledge of Python 

programming at the beginning of the course.  

 

Table 1. Python programming background knowledge in the control and experimental groups 

Group N Mean SD t-value 

GC 41 42.78 17.95 .70 

GE 29 39.97 14.67 

Note. Independent sample t tests; *p < .05. 

 

In this study, ethics review approval (NTU-REC No.: 202005ES032) was granted by the National Taiwan 

University Research Ethics Committee. In addition, all participants in this study were informed that their 

learning event data would be collected, and all participants signed an informed consent form. 

 

 

3.2. Experimental design of learning activities  

 

We constructed a Python integrated learning environment, comprising an e-book reading system called 

BookRoll, a review system, and an assessment system, specifically for students in non information fields. 

BookRoll is an online e-book learning platform developed by the School of Social Information at Kyoto 

University (Japan). Because after-class review has a considerable impact on academic performance, the review 

system established in this study provides students with questions through cloze and short-answer questions. 

Finally, the assessment system allows students to tests their knowledge of key concepts after class through the 

use of multiple-choice questions; in this manner, students obtain an overview of their proficiency in key 

concepts.  

 

In the Python programming course, the principle concepts are program output and input (C1), strings (C2), lists 

(C3), and selection logic (C4). The learning activities of the experimental and control groups are presented in 

Figure 2. In Week 1, students completed a test on Python programming background knowledge as well as a 

pretest of SRL ability measured using the MSLQ learning strategy subscale; during this week, students also 

received an introduction on how to operate the various learning environments (see Figure 1(a) to 1(d)) adopted in 

this study. Students in both groups engaged in two types of learning activities, namely programming learning 

activities and programming review activities, with only the review activities differing between the groups: The 

control group received traditional classroom tutoring review activities, whereas the experimental group received 

personalized intervention review activities.  
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From Weeks 2 to 5, the students in the experimental and control groups learned the basic concepts of Python 

programming (C1–C4) through three programming learning activities: programming instruction, programming 

knowledge review, and programming knowledge self-assessment. For the programming instruction activity, the 

teacher first uploads learning materials to BookRoll (see Figure 1(a)) and subsequently explains Python 

programming concepts in the classroom. In the programming knowledge review, students can review the key 

content of the learning materials through the two types of questions in the review system: cloze (see Figure 1(b)) 

and short answer (see Figure 1(c)). In the programming knowledge self-assessment, students use the assessment 

system (see Figure 1(d)) to confirm their mastery of key concepts through multiple-choice questions.  

 

Figure 1. Learning environments adopted in this study 

  
(a) BookRoll (b) Cloze question in the review system 

(c)  

  
(c) Example short-answer question in the review 

system 

(d) Assessment system 

 

Figure 2. Learning activities of the experimental and control groups 

 
 

To help students prepare for the programming knowledge exam, we conducted various programming review 

activities for both groups in Week 7. First, the students in the experimental and control groups completed the 

same summary review activity, which focused on the key content of the four concepts (C1 to C4) learned in the 

course. Subsequently, the students in the experimental group received the personalized intervention (see Figure 

2), as described in Section 3.3, whereas those in the control group received traditional classroom tutoring where 
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students could clarify their doubts by asking the teacher questions and receiving related guidance. To measure 

the effect of the different review activities, a pretest of programming knowledge was conducted in Week 6, and 

then a posttest of programming knowledge and SRL ability was conducted in Week 8. The pretest and posttest 

questions are presented in Appendix A. 

 

 

3.3. Personalized intervention process 

 

To provide teachers with reference information regarding students’ learning behavior during the tutoring 

intervention process, we designed a personalized intervention tutoring process that involves 6 steps based on 

learning analysis (see Figure 3). Step 1 involves material preparation. In Step 1.1, teachers upload the learning 

content to the materials database before class. In Step 1.2, the learning content is sent from the materials database 

to the online learning environments such as BookRoll. In Step 2, students learn Python programming in 

BookRoll under the guidance of a teacher. Step 3 involves students using the online learning environment, with 

their learning events collected and recorded in the learning log database. Step 4 involves the construction of 

learning analysis tools; in Step 4.1, a concept mastery prediction model is constructed using machine learning 

methods (see Section 3.5); in Step 4.2, a summary of materials is automatically generated using BERT and 

stored in the materials summary database (see Section 3.4.1); and in Step 4.3, questions are automatically 

generated using GPT-2 and stored in the question bank (see Section 3.4.2). On the basis of the learning analysis 

tool established in Step 4, in Step 5, personalized learning materials are automatically generated and sent to each 

student. Subsequently, in Step 6, teachers conduct personalized tutoring interventions for students according to 

the personalized materials automatically generated in Step 5.  

 

Figure 3. Personalized intervention tutoring based on learning analytics 

 
 

 

3.4. Automatic generation process of personalized remedial materials 

 

In Step 5 of the personalized intervention process (see Figure 3), personalized remedial content is generated for 

each student; the steps in this content generation process are illustrated in Figure 4. The personalized remedial 

materials are obtained using two components: learning diagnosis and remedial content generation. Learning 

diagnosis involves three analysis systems: concept mastery prediction (see Section 3.5), self-evaluation results in 

the assessment system (see Section 3.2), and the extracted features (presented in Appendix B). The primary goal 

of the learning diagnosis component is to place each student into one of the following performance categories: 

proficient, practical improvement, and nonproficient. In the remedial content generation component, remedial 
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content is automatically generated through two retrievers, one related to questions and the other to material 

summaries. The question retriever is designed to retrieve the practice questions automatically generated by the 

GPT-2 from the question bank; the summary retriever is designed to retrieve material summaries automatically 

extracted by BERT. Figure 5 depicts a screenshot of the content of the automatically generated personalized 

remediation material.  

 

Figure 4. Steps in the automatic generation of personalized remedial materials 

 
 

Figure 5. Screenshot of the automatically generated personalized remediation material 

 
 

Proficient students are those students who are predicted to be proficient in learning concepts by the concept 

mastery prediction model and who receive a passing result in the assessment system. Because of their 

proficiency in learning concepts, these students do not need to receive additional supplementary materials, but 

this study will give proficiency results for each concept, thereby encouraging students to continue to study hard. 

Nonproficient students are those predicted to be nonproficient by the concept mastery prediction model and who 

have low values for extracted features. These low values indicate that these students lack active online learning 
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behaviors. Students’ poor online learning behaviors may lead to a lack of understanding of the learning content, 

which in turn can lead to them being deemed as nonproficient by the concept mastery prediction model. To help 

these students rapidly review key material before the test, we provide them with summary content through 

BERT, guide them to organize and acquire key concepts, and provide them with practice questions including 

basic concept questions and coding concept questions.  

 

Finally, students are placed in the practice improvement category in two cases: (1) they are predicted to be 

proficient by the concept mastery model, but they receive a failing grade in the assessment system and (2) they 

are predicted to be nonproficient by the concept mastery model, but they have high values for the extracted 

features, indicating active participation in online learning. In the second case, although the students are active in 

online learning, they are still predicted to be nonproficient in key concepts. Such students require additional 

practice to achieve proficiency, hence the name of this group. Students in the practice improvement category 

lack the ability to apply what they have learned to programming; therefore, they receive coding concept 

questions, thereby helping them develop their programming skills as they solve problems.   

 

 

3.4.1. Material summary automatic generation process 

 

The main goal of summarization is to extract the main idea of a document, generally combining relevant or 

important information into a concise structure (Allahyari et al., 2017). Summarization help students to not only 

rapidly obtain key content from learning material but also improve their review effectiveness. The BERT 

extractive summarizer model (see https://github.com/dmmiller612/bert-extractive-summarizer) first embeds the 

sentences in the input text into BERT’s sentence embedding vector, then uses k-means to group all sentences in 

the text, and finally extracts the sentences closest to the cluster centroids as summaries (Miller, 2019). The 

BERT extractive summarizer model allows the user to specify the number of summary sentences to generate. For 

the summary extraction of Python learning materials, we first sorted the textbook content from the e-book and 

then used the BERT extractive summarizer model to extract the summary sentences and store them in the 

material summary database. Figure 6(a) and 6(b) are list examples of summary sentences extracted from the 

learning material. 

 

Figure 6. Example of extracted summary sentences from learning material 

 
(a)Screenshot of learning content from e-book. 

 
(b)The extracted summary sentences are marked in red font. 

 

 

3.4.2. Question automated generation process  

 

Proposed by OpenAI, the GPT model is a language model that predicts the next word in an incomplete sentence; 

after the predicted new words are added, the next word is predicted again until a complete sentence is produced. 

The GPT-2 language model (Radford et al., 2018) focuses on the completion of some tasks such as answering 

questions and generating text output. The GTP can thus serve as a sentence generator; for this reason, it has been 

widely used in dialogue systems, medical text simplification, and many other applications (Ghojogh & Ghodsi, 

2020).  

 

The GPT-2 model of question generation using transformers (see https://github.com/patil-

suraj/question_generation#question-generation-using-transformers) aims to generate questions with pretrained 

transformers through simplified data preprocessing. It can generate different types of questions and answers by 

using three models: the single-task question generation model, multitask question generation model, and end-to-

end question generation model. The goal for the model in this study was to generate questions and answers 

together, with the answers appearing in the text. Therefore, we adopted the single-task question generation 

model.  

 

https://github.com/patil-suraj/question_generation#question-generation-using-transformers
https://github.com/patil-suraj/question_generation#question-generation-using-transformers
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Programming knowledge includes basic conceptual knowledge and coding conceptual knowledge. Basic 

conceptual knowledge can be extracted from the material content of textbooks, while coding conceptual 

knowledge focuses on explaining programming syntax through program code. In order to improve students’ 

review efficiency through program practice questions, this study generates basic concept questions and coding 

concept questions for each learning concept. Figure 7 shows two examples of generating basic concept and 

coded concept questions. We applied GPT-2 model of question generation using transformers, which uses a 

single-task question generation model to automatically generate basic conceptual questions and answers from 

material summaries automatically generated by the summary retriever, and handed over to the instructor to 

confirm and modify the GPT-2 automatic generated basic concept questions and answers. For coding concept 

questions, the instructor will design coding application practice questions. Finally, both basic concept questions 

and coded concept questions will be stored in the question bank.  

 

Figure 7. Examples of generated questions for basic concept questions and coding application questions 

 
 

 

3.5. Construction process of at-risk student prediction model  

 

To identify at-risk students in the targeted programming course, we proposed an at-risk student identification 

process (Figure 8), which comprises the learning profile collection, classifier construction, and at-risk student 

identification phases. In the learning portfolio collection phase, the learning events of students in the integrated 

learning environments (i.e., BookRoll, assessment system, and review system) were collected. In the classifier 

construction phase, with reference to the training samples, a classifier was constructed using the following steps: 

feature extraction, feature selection, and classifier construction. Finally, in the at-risk student identification 

phase, validation samples were identified through the constructed classifier.  

 

In the learning portfolio collection phase, we collected students’ learning logs from BookRoll, review system, 

and assessment system. In the at-risk student identification phase, the classification model is first constructed 

based on the training data set of DS1101, and then it is possible to predict whether the students in the data set 

DS1102 will pass or fail. In the classifier construction phase, we generated an at-risk student prediction model 

through three steps: feature extraction, feature selection, and construction. In the feature extraction step, relevant 

features were extracted from log data. Detailed instructions for each extracted feature are described in Appendix 

B. In the feature selection step, we use three selection methods—minimal redundancy maximal relevance 

(mRMR), chi-square test (Chi2), and relief algorithm—to identify the most relevant and powerful features from 

among the extracted features (Chandrashekar & Sahin, 2014). The mRMR method is used to identify the set of 

features in the original feature set that exhibits a high correlation with the output and a low correlation between 

the features themselves (Li et al., 2012); the chi-square test estimates whether a class label is independent of a 

feature (Jin et al., 2006); and the relief algorithm calculates a statistic for each feature that can be used to 

estimate feature quality or relevance to the output (Kira & Rendell, 1992).  

 

In the construction phase of the at-risk student prediction model, we constructed prediction models by using 

support vector machine, decision tree, logistic regression, and k-nearest neighbor. Support vector machine is a 
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supervised learning model that finds a separable hyperplane for samples by mapping samples to a high-

dimensional space; it then predicts the class of new data samples. Logistic regression is used to construct a 

classification model by finding a regression line based on the probability of occurrence of sample classes (Kutner 

et al., 2005). K-nearest neighbor is a nonparametric classification method that establishes a classification model 

through the k nearest data points for a data sample (Cover & Hart, 1967). Finally, with decision trees, the focus 

is on building a classification model to find a tree structure that represents all known training data samples; the 

aim is to reveal hidden rules that identify categories based on feature values (Quinlan, 1983). To evaluate the 

prediction performance, this study used five metrics of accuracy, precision, recall, F1 measure, and area under 

the curve (AUC) (Ferri et al., 2009; Fawcett, 2004). 

 

Figure 8. At-risk student identification process 

 
 

 

4. Results and discussion 
 

4.1. The critical online learning features for each programming learning concept  

 

For the early identification of at-risk students, we used four feature selection methods to improve the prediction 

performance of the key learning features of each learning concept. The prediction performance of the four 

models is presented in Appendix C. Table 2 presents summaries of the prediction performance of classifications 

with the four feature selection methods for concepts C1 to C4. The results indicate that the classification using 

mRMR feature selection generally yielded the highest AUC values, ranging from 0.90 to .94. Therefore, we 

adopted mRMR as our feature selection method.  

 

Table 2. Summaries of prediction performance of classifications with feature selection methods for concepts C1 

to C4 

Feature selection Accuracy Precision Recall F1 AUC 

mRMR .89~.94 .94~.95 .89~.90 .88~.90 .90~.94 

Chi-Square .78~.89 .84~.94 .78~.89 .76~.90 .69~.94 

Relief .80~.89 .91~.93 .80~.89 .84~.89 .83~.92 

 

For exploring the key learning features that affect students’ mastery of each learning concept through the 

features selected by the mRMR method (RQ 1). Table 3 indicates the key learning features selected by the 

mRMR for concepts C1–C4. For concepts C1 and C2, the key features for determining whether students have 

mastered the concepts were mostly related to the features extracted from BookRoll and the review system, 

namely review time (f4), preview time (f5), and correct answer rate in assessment (f7). This is because concepts C1 

and C2 involve relatively basic knowledge in programming; students can understand these two concepts by 

reading and reviewing the content of the e-book. For the content of concepts C3 and C4, the importance of the 

features associated with the assessment system (f6, f7) and review systems (f8, f9) increased accordingly. The 

conceptual content of concept C3 (List) centers on the definitions of composite data types. In addition to 

understanding the definition of composite data type List in the textbook, students must also learn the operation 

and application of List. The conceptual content of concept C4 (choice structure) centers on program logic. 

Students must familiarize themselves with various types of selection structures and methods through practical 

exercises; examples include the if...else structure, if–elif–else structure, and nested if structure. Therefore, 
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because of the complexity of concepts C3 and C4, students cannot master them merely by reading or reviewing 

the content of the textbook. They would need to also further enhance their conceptual proficiency by practicing 

the questions relating to application or program tracking. That is, for students to become proficient in concepts 

C3 and C4, they must refer to the programming applications or coding track questions covered in the assessment 

system.  

 

Table 3. Key learning features selected using the mRMR method for each learning concept 

Concept At-risk prediction model Key features 

C1 SVM with mRMR f4, f9, f5, f7 

C2 SVM with mRMR f4, f1, f3, f7 

C3 DT with mRMR f7, f9, f8, f1, f6 

C4 DT with mRMR f7, f6, f9, f1 

 

 

4.2. Effect of personalized intervention tutoring approach on students’ learning performance  

 

The independent sample t-test results for the pretest and posttest are listed in Table 4. We observed no significant 

difference in the pretest results between the experimental and control groups (t = −.12, p > .05). This result 

suggests that students in the two groups achieved the same level of programming knowledge after engaging in 

Python programming learning activities for 4 weeks. The posttest scores of the experimental and control groups 

were 89.63 and 83.29 (t = −2.44, p < .05), respectively, representing a significant difference. The personalized 

intervention tutoring approach aims to recommend programming learning materials based on the predicted 

results of students’ learning performance through machine learning methods. This result is consistent with 

previous research findings that learning resources recommended by machine learning can guide students to 

achieve higher learning performances (El-Bishouty et al., 2018). Accordingly, in response to RQ2, we found that 

compared with traditional classroom tutoring review, personalized intervention review can more effectively 

improve students’ learning performance.  

 

Table 4. Independent t-test results of pretest and posttest between control and experimental groups 

Group N Pre-test Post-test 

Mean/SD t-value Mean/SD t-value 

GC 42 74.62/14.33 -.12 83.21/15.65 -2.44* 

GE 36 75.02/13.71 89.72/6.86 

Note. *p < .05. 

 

After the programming review learning activity, students in the experimental group were asked to respond to 

four feedback questions to elucidate their views on the personalized intervention tutoring they received. The four 

feedback questions (see Appendix D) were answered using a 5-point Likert scale, ranging from 1 (strongly 

disagree) to 5 (strongly agree). Table 5 presents a summary of their responses. Of the 36 students in the 

experimental group, 30 provided feedback. The first question focused on how helpful students found the review 

activities conducted by the teacher. The average score for this question was 4.17, indicating that most students 

had positive perceptions of the classroom review activities and regarded them as effective. Notably, 16 of the 30 

students who answered the question were classified as proficient. For students who are familiar with each 

concept, although no remedial materials will be given in this study, the familiarity evaluation results of each 

concept will still be provided to encourage students to continue to study hard. Since only 14 students in this 

study were not conceptually proficient, only these 14 students answered questions 2-4 and were used to discuss 

the feedback received on the remedial materials. 

 

Table 5. Responses to the four feedback questions 

Question  Number of 

responds 

Mean/ 

SD 

Number of selected students for each point 

1(SD) 2(D) 3(N) 4(A) 5(SA) 

Q1 30 4.17/.79 0 1 4 14 11 

Q2 14 4.29/.83 0 1 0 7 6 

Q3 14 4.36/.84 0 1 0 6 7 

Q4 14 4.36/.84 0 1 0 6 7 

Note. SD: strongly disagree; D: disagree; N: neutral; A: agree; SA: strongly agree. 

 

Thirteen students indicated that the personalized intervention remedial materials not only helped them to review 

the conceptual content independently but also helped them to review the conceptual content that they were not 

familiar with (Table 5). This means that the students generally had a positive perception of the materials and 
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were satisfied with personalized intervention tutoring approach. For Questions 2–4, only one student provided a 

rating of 2 points. The teacher interviewed this student to inquire into why he disagreed that the individualized 

intervention tutoring approach was effective. The student indicated that although the teacher’s review activities 

were explained clearly, for computer programming, more time should be dedicated to practicing programming 

skills on the computer; moreover, he regarded conceptual learning as having low importance, which explains his 

disagreement with the relevant item on the questionnaire. This student argued that an individualized intervention 

tutoring approach that provides both conceptual review material regarding programming knowledge and 

personalized programming exercises would be of greater benefit to students’ programming skills.  

 

 

4.3. Impact of learning strategies and online learning features on learning performance 

 

For the experimental and control groups, only 35 and 32 students, respectively, completed both the pretest and 

posttest for student’s SRL ability. We used the SRL ability pretest result as a covariate and used analysis of 

covariance (ANCOVA) to identify significant differences between the two groups in the posttest of SRL ability; 

the ANCOVA results are presented in Table 6. For the rehearsal (F = 8.15, p < .05), critical thinking (F = 11.93, 

p < .05), metacognitive self-regulation (F = 12.24, p < .05), effort regulation (F = 10.42, p < .05), and peer 

learning (F = 4.15, p < .05) dimensions, the students in the experimental group scored significantly higher than 

those in the control group. These results indicate that, after the review activities, students who engaged in 

personalized intervention activities had significantly higher abilities in the aforementioned five learning 

strategies than those who engaged in traditional classroom tutoring activities. That is, personalized tutoring 

intervention was more effective than traditional classroom tutoring activities in improving students’ abilities in 

the aforementioned five learning strategies.  

 

Table 6. Analysis of covariance results of posttest SRL ability for control and experimental groups. 

MSLQ Group N Mean/SD of 

pre-test 

Post-test F 

Mean/SD Adjusted Mean Std. Error 

Rehearsal GC 32 3.80/.42 4.10/.58 3.61 .094 8.153** 

GE 35 3.93/.34 4.14/.44 3.99 .090 

Elaboration GC 32 3.68/.44 4.12/.57 3.74 .085 2.912 

GE 35 3.76/.50 4.09/.49 3.94 .081 

Organization GC 32 3.57/.36 3.76/.40 3.71 .095 1.057 

GE 35 3.45/.30 3.71/.30 3.85 .091 

Critical thinking GC 32 3.56/.47 3.72/.55 3.06 .081 11.927*** 

GE 35 3.35/.78 3.74/.76 4.00 .077 

Metacognitive self-

regulation 

GC 32 3.62/.48 3.67/.43 3.45 .051 12.243*** 

GE 35 3.53/.51 4.05/.68 3.70 .048 

Time and study 

environment 

GC 32 3.72/.45 3.95/.51 3.55 .047 0.571 

GE 35 3.60/.47 3.94/.64 3.60 .045 

Effort regulation GC 32 3.58/.33 4.02/.52 3.57 .084 10.423** 

GE 35 3.42/.29 3.72/.35 3.93 .080 

Peer learning GC 32 3.49/.23 3.65/.33 3.71 .136 4.149* 

GE 35 3.54/.42 3.94/.56 3.32 .131 

Help seeking GC 32 3.63/.75 3.32/.92 3.37 .077 3.705 

GE 35 3.37/.39 3.55/.51 3.58 .073 

Note. *p < .05; **p < .01; ***p < .001. 

 

In terms of the effect that students’ SRL ability has on their academic performance, Song, Hong, and Oh (2021) 

found that although students’ learning strategy ability was not significantly correlated with their academic 

performance, the online learning features in programming courses, such as the number of chosen program tasks 

and overall code-run trials, were significantly correlated with students’ learning abilities. Therefore, we 

examined the correlation between online learning features (listed in Table 6) and learning strategy ability as well 

as the correlation between online learning features and learning performance; the results are presented in Table 7. 

Learning Features f3 and f8 were significantly correlated with the pretest result for learning performance (r = .37, 

p < .05 for f3; r = .48, p < .01 for f8). Moreover, although f8 was not related to any of the learning strategies, 

feature f3 was significantly related to LS1 (rehearsal), LS3 (organization), LS5 (metacognitive self-regulation), LS6 

(time and study environment), LS7 (effort regulation), LS8 (peer learning), and LS9 (help seeking).  

 

On the basis of the correlation results between online learning features and learning strategies (Table 7), we used 

multiple regression analysis to explore the correlations among online learning features, learning strategies, and 
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learning performance (shows in Appendix E). Our results indicated that features f3 (β = .24, p < .01) and f8 (β = 

1.15, p < .05) were significant predictors of pretest learning performance, LS9 (help seeking) (β = 18.30, p < .01) 

was a significant predictor of feature f3, and LS1 (rehearsal) (β = .27, p < .05) was a significant predictor of LS9 

(help seeking). In terms of learning strategies, these results suggest that rehearsal first affects help seeking, which 

then affects the amount of notes students add, eventually affecting their learning performance. Figure 9 presents 

the conceptual diagram of the present regression analysis results for predictors f3, f8, LS1, and LS9 for pretest 

learning performance. The results in Table 6 indicate that students in the experimental group had significantly 

higher values than those in the control group for the rehearsal learning strategy. In addition, the results in Table 7 

reveal that the rehearsal learning strategy was a predictor of help seeking, which in turn was a predictor of memo 

amount (f3); finally, the amount of notes students wrote (f3) and number of tests they completed (f8) were 

predictors of learning performance. In sum to reply RQ3, the personalized intervention tutoring approach 

improved students’ ability in terms of help seeking by promoting their rehearsal learning strategy, which in turn 

prompted students to write more notes on BookRoll, ultimately leading to improved learning performance. 

 

Table 7. Pearson correlations among the extracted features, learning strategies, and learning performance. 
  f1 f2 f3 f4 f5 f7 f8 f9 

LS1 (Rehearsal) 0.008 0.166 .409* 0.142 .447** 0.164 0.054 -0.044 

LS2 (Elaboration) 0.002 0.195 0.301 0.11 0.251 0.219 -0.05 0.144 

LS3 (Organization) 0.041 .451** .428** 0.122 0.212 0.081 0.158 0.005 

LS4 (Critical thinking) -0.033 0.075 0.169 0.075 0.047 0.001 -0.207 -0.034 

LS5 (Metacognitive self-regulation) 0.14 0.263 .480** 0.287 0.246 0.134 0.157 0.105 

LS6 (Time and study environment) 0.318 0.185 .505** .329* 0.309 0.304 0.297 0.191 

LS7 (Effort regulation) 0.05 0.054 .455** .433** -0.018 0.148 0.08 0.135 

LS8 (Peer learning) 0.324 0.218 .338* 0.208 .445** 0.308 0.285 .441** 

LS9 (Help seeking) 0.249 0.09 .495** 0.226 0.229 0.036 0.184 0.021 

Pre-test 0.28 0.3 .37* 0.26 0.17 -0.03 .48** 0.15 

Post-test -0.11 0.08 -0.04 -0.13 0.03 0.09 0.08 0.21 

Note. *p < .05; **p < .01. 

 

Figure 9. Conceptual diagram of the regression analysis results 

 
 

 

4.4. Effect of personalized intervention on learning performance for each learning strategy 

 

To respond to RQ4, we used two-way analysis of variance (ANOVA) to explore the impact of the interaction of 

review activity and learning strategies on learning performance. Because review activity is a categorical variable 

pointing to either personalized intervention or traditional classroom tutoring, we adopted k-means clustering to 

divide students’ learning strategy ability into categorical variables at three levels: high, medium, and low. 

Among the nine learning strategies, four had significant effects on the interaction between the posttest results for 

learning strategies and learning performance, namely review activity × rehearsal (F = 6.94, p = .002), review 

activity × elaboration (F = 4.21, p = .019), review activity × organization (F = 6.58, p = .002), and review 

activity × critical thinking (F = 9.53, p = .000). The present two-way ANCOVA results are presented in Table 8, 

and the descriptive statistics for the high, medium, and low groups for rehearsal, elaboration, organization, and 

critical thinking are presented in Appendix F. Our results indicated that the review activity approach, four 

learning strategies (rehearsal, elaboration, organization, and critical thinking), and the interaction between the 

learning strategies and review activity had significant effects on students’ learning performance.  
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Table 8. Two-way ANOVA results for review activity and four learning strategies—rehearsal, elaboration, 

organization, and critical thinking 

Variables SS df MS F Significant 

Review activity 2119.55 1 2119.55 18.53 .000 

Rehearsal 2608.87 2 1304.44 11.40 .000 

Review activity * Rehearsal 1588.77 2 794.38 6.94 .002 

Review activity 1847.91 1 1847.91 14.30 .000 

Elaboration 1498.82 2 749.41 5.80 .005 

Review activity * Elaboration 109.13 2 545.06 4.21 .019 

Review activity 2071.90 1 2071.90 16.90 .000 

Organization  2216.64 2 1108.32 9.04 .000 

Review activity * Organization 1613.81 2 806.91 6.58 .002 

Review activity 212.80 1 212.80 18.52 .000 

Critical Thinking  1927.18 2 963.59 8.41 .001 

Review activity * Critical Thinking 2183.45 2 1091.72 9.53 .000 

 

Table 9. Simple main-effect analysis of learning performance in terms of the four learning strategies 

Variables SS df MS F-value Post-Hoc 

Review activity      

(GC)Review with traditional class tutoring  3351.44 2 1675.72 9.77** ReL = ReM > ReH 

(GE)Review with personalized intervention 10.09 2 5.05 1.07  

Learning strategy: Rehearsal       

ReL 31.07 1 31.07 .92  

ReM 273.97 1 273.97 .10  

ReH 2747.76 1 2747.76 9.65** GE > GC 

Review activity      

(GC)Review with traditional class tutoring  233.11 2 1165.06 5.89** ElL = ElM > ElH 

(GE)Review with personalized intervention 51.21 2 25.60 .53  

Learning strategy: Elaboration      

ElL 9.20 1 9.20 .28  

ElM 173.23 1 173.22 1.66  

ElH 216.00 1 216.00 7.39* GE > GC 

Review activity      

(GC)Review with traditional class tutoring  2734.82 2 1367.41 7.30** OrL = OrM > ElH 

(GE)Review with personalized intervention 127.22 2 63.61 1.36  

Learning strategy: Organization      

OrL 104.17 1 104.17 2.688  

OrM 216.75 1 216.75 2.207  

OrH 2700 1 2700 1.15** GE > GC 

Review activity      

(GC)Review with traditional class tutoring  3422.29 2 1711.15 1.08*** CTL = CTM > CTH 

(GE)Review with personalized intervention 19.95 2 9.98 .20  

Learning strategy: Critical Thinking      

CT
L
 105.94 1 105.94 .98  

CT
M

 5.98 1 5.98 .13  

CT
H
 3217.47 1 3217.47 12.36** GE > GC 

Note. *p < .05; **p < .01; ***p < .001. 

 

On the basis of the results in Table 8, we conducted a simple main effects analysis to examine the effect of 

review activities on the learning performance of students with different SRL ability levels; the results are listed 

in Table 9. In the traditional classroom tutoring, students with different ability levels in rehearsal, elaboration, 

organization, and critical thinking exhibited significantly different learning performances. In the personalized 

intervention, no significant differences were observed in students’ learning performance at different ability levels 

for the four aforementioned learning strategies. The post hoc results of traditional classroom tutoring revealed 

that students with medium and low ability levels in rehearsal (F = 9.77, p < .01, ReL = ReM > ReH), elaboration (F 

= 5.89, p < .01, ElL = ElM > ElH), organization (F = 7.30, p < .01, OrL = OrM > ElH), and critical thinking (F = 

1.08, p < .001, CTL = CTM > CTH) had significantly higher learning performance than students with high ability 

levels in these four learning strategies. This result suggests that students with strong learning strategy abilities 

may need more review content to maximize their learning performance after the review activity. This result also 
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confirms that personalized intervention activities can help students with high learning strategy ability maximize 

their learning performance through the provision of additional review content; this explains why the 

experimental group students at all three learning strategy levels did not differ significantly in learning 

performance.  

 

We subsequently examined the effect of different learning strategy levels on the learning performance prompted 

by the two review activities; for high-level rehearsal (F = 9.62, p < .01, GE > GC), elaboration (F = 7.39, p < .05, 

GE > GC), organization (F = 1.15, p < .01, GE > GC), and critical thinking (F = 12.36, p < .01, GE > GC), we 

observed significant differences in learning performance between the experimental and control groups (see Table 

9). However, no significant difference was noted in students’ learning performance between the two groups for 

low- and medium-level learning strategies. These results suggest that students with strong learning strategy 

abilities can achieve significantly higher learning performance through personalized intervention activities than 

through traditional class tutoring activities.  

 

 

5. Conclusions 
 

Artificial intelligence and machine learning technology has stimulated the development of personalized 

interventions in remedial coaching. We proposed a personalized intervention approach based on artificial 

intelligence technology for use in a computer programming course. Our results indicate that after the review 

activity, students who received personalized intervention had significantly higher learning performance than 

those who merely received class tutoring. This result confirms the effectiveness of the personalized intervention 

approach in helping students to review content.  

 

Because SRL can be used to explore students’ cognition during problem-solving as part of programming 

learning, we also considered how students’ SRL abilities would influence their learning performance under the 

proposed personalized intervention approach. Our results reveal that the proposed personalized intervention 

prompted improvements in the following learning strategies: rehearsal, critical thinking, metacognitive self-

regulation, effort regulation, and peer learning. We found that, although students’ ability in each learning 

strategy was not directly related to learning performance, the learning strategies of rehearsal and help seeking 

indirectly affected learning performance through Learning Feature f3 (memo amount). 

 

In terms of the interaction effect between individualized intervention and learning strategies on learning 

performance, we observed significant results for rehearsal, refinement, organization, and critical thinking. 

Students with strong abilities in these four learning strategies achieved higher learning performance in the 

personalized intervention approach than in the class tutoring approach. That is, for such students, the additional 

review content provided by the personalized intervention effectively supported their reviewing, thereby 

improving their learning performance.  

 

 

5.1. Limitation 

 
The participants in this study were mainly students from noninformation fields; thus, the curriculum of this 

course would not be suitable for students majoring in computer science. Moreover, the proposed personalized 

intervention review activity focuses on programming-related knowledge, with the assessment of learning 

performance also focusing on programming concepts; that is, students’ actual program coding ability was not 

tested. Therefore, the proposed intervention may require some modifications for effectively improving students’ 

coding ability. The participants in this manuscript are only the number of students in two classes (the students in 

the experimental group and the control group were 36 and 42, respectively), and subsequent large-scale empirical 

studies are need to be verified.  
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Appendix A 
 

Pretest and posttest questions for programming knowledge 

Concept: C1 

Pre-test Post-test 

Question C1_1: 

Which of the following variables is named incorrectly? 

Option 1: _name 

Option 2: name1 

Option 3: 1name 

Option 4: name_ 

Question C1_2: 

The symbol of annotation in Python is ? 

Question C1_3: 

Which of the following options are not reserved 

words? 

Option 1: not 

Option 2: and 

Option 3: or 

Option 4: xor 

 

Question C1_4: 

A Python program is given below: 

print(‘\’’, ‘\’’, sep = ‘A’) 

What is the result after executing this program? 

Question C1_1: 

Which of the following variables is named incorrectly? 

Option 1: _996apple 

Option 2: _apple 

Option 3: 996_apple 

Option 4: apple_5 

Question C1_2: 

What symbols do I need to replace ? to print the 

‘ symbol print(‘ ? ‘) 

Option 1: # 

Option 2: !: 

Option 3: / 

Option 4: \ 

Question C1_3: 

A Python program is given below: 

print(“=“, “=“, sep = “u”) 

What is the result after executing this program? 

 

Concept: C2 

Question C2_1: 

A Python program is given below: 

mail = ‘apple@gmail’  

mail = mail.split(‘@’)  

print(mail[1]) 

What is the result after executing this program? 

Question C2_2: 

A Python program is given below: 

mail = ‘meme_@gmail.com’  

index = mail.find(‘@’)  

ans = mail[0:index:1]  

print(ans) 

What is the result after executing this program? 

Question C2_3: 

What are the results after executing these arithmetic 

formulae respectively? (Be careful: 5 and 5.0 are 

different answers) 

7/2 

float(7//2) 

int(7%2) 

Question C2_4: 

What are the results after executing these programs? 

(If the program cannot execute, please fill in unable to 

execute) 

L = [‘Python’, ‘Hello world’, 5] 

L.spilt() 

L[1].spilt() 

Question C2_1: 

Which of the following is the return value of 

‘test’.find(‘t’)? 

Option 1: 3 

Option 2: -1 

Option 3: 0 

Option 4: True 

Question C2_2: 

Which of the following options has the meaning of 

squared root? 

Option 1: **(1/2) 

Option 2: *2 

Option 3: //2 

Option 4: **2 

Question C2_3: 

A Python program is given below: 

temp = 7 // 2 

ans = temp % 2 

print(ans) 

What is the result after executing this program? 

Question C2_4: 

A Python program is given below: 

temp = ‘中央大學’  

index = temp.find(‘大’)  

temp[ index : ] 

What is the result after executing this program? 

Question C2_5: 
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L[2].spilt() 

Question C2_5: 

A Python program is given below: 

alphabet = ‘abcdefghijklmnopqrstuvwxyz’ 

n = 26 

print(alphabet[n%2]) 

What is the result after executing this program? 

Question C2_6: 

Suppose s = ‘abc’, what will the output of s.find(‘z’) 

be? 

Option 1: 0 

Option 2: 2 

Option 3: 1 

Option 4: -1 

A Python program is given below: 

url = “https://www.ncu.edu.tw/tw/index.html” 

print( url.count(‘/’) ) 

What is the result after executing this program? 

 

Concept: C3  

Question C3_1: 

Suppose a = [1,2,3] becomes [4,1,2,3] through a 

certain program, which of the following functions is 

needed for the program? 

Option 1: None of them 

Option 2: a.append(4) 

Option 3: a[0] = 4 

Option 4: a.insert(0,4) 

Question C3_2: 

Suppose a = [1,2,3], what are the results after 

executing the following programs respectively? 

Program 1: myList[2:-1] 

Program 2: myList[1][-1] 

Question C3_3: 

Which of the following is the functions that calculates 

the number of times that a particular elements is inside 

the list? 

Option 1: .find() 

Option 2: .count() 

Option 3: .replace() 

Option 4: .len() 

Question C3_1: 

A Python program is given below: 

myList = [ [1,2,3], [4,5,6], 7, [1, [2, 3]] ] 

Which of the following is the output of len(myList)? 

Option 1: 5 

Option 2: 10 

Option 3: 3 

Option 4: 4 

Question C3_2: 

A Python program is given below: 

mylist = [1, 2, 3] 

Which of the following is the output of 

mylist.count(2)? 

Option 1: True 

Option 2: -2 

Option 3: 0 

Option 4: 1 

Question C3_3: 

A Python program is given below: 

temp = [1,2,3] 

temp.insert(2,4) 

temp.append(1) 

print(len(temp)) 

What is the result after executing this program? 

Question C3_4: 

A Python program is given below: 

temp = [1,2,5] 

temp.reverse() 

print(temp[0]) 

What is the result after executing this program? 

Concept: C4 

Question C4_1: 

A Python program is given below: 

mail = ‘anna@gmail.com’  

if(‘gmail’ in mail):  

print(True)  

else:  

print(False) 

What is the result after executing this program? 

Question C4_2: 

Which of the following options will output false? 

Option 1: print( 1 != 1 and 1 == 1 )  

Option 2: print(1 != 2) 

Option 3: print(1 == 1) 

Option 4: print( 1 != 1 or 1 == 1 ) 

Question C4_1: 

Which of the following is not a reserved word for 

logical judgement? 

Option 1: or 

Option 2: not 

Option 3: and 

Option 4: break 

Question C4_2: 

Which of the following options will output false? 

Option 1: 1 == 1 and 1 != 2 

Option 2: 1 == 1 or 1 == 3 

Option 3: ‘a’ == ‘a’ 

Option 4: not(1 == 1 or 1 == 3) 

Question C4_3: 
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Question C4_3: 

In a conditional program (nested if is not considered), 

what are the maximum number and minimum number 

of if and else? 

A Python program is given below: 

score = 59 

if score > 60: 

    print(‘ans1’) 

    if score < 60: 

        print(‘ans2’) 

else: 

    print(‘ans3’) 

What is the result after executing this program? 

Question C4_4: 

A Python program is given below: 

if ‘a’ in [‘ab’, ‘c’]: 

    print(‘ans1’) 

else: 

    print(‘ans2’) 

What is the result after executing this program? 

 

 

 

Appendix B 
 

Extracted features for each learning system 

Learning system Feature Description 

BookRoll f1: reading time Total e-book reading time in class for each concept.  

f2: marker amount Number of markers added to the e-book per concept. 

f3: memo amount Number of memos added to the e-book per concept. 

f4: review time Total e-book reading time after class for each concept.  

f5: preview time Total e-book reading time before class for each concept. 

Assessment 

system 

f6: time of first assessment The first time each concept was tested in the assessment 

system. 

f7: correct answer rate in assessment Correct answer rate for each concept in the assessment system.  

f8: number of completed tests Number of completed tests in the assessment system. 

Review system f9: correct answer rate in review Correct answer rate for each concept in the review system.  

f10: time of first review  The first time each concept was tested in the review system. 

 

 

Appendix C 
 

Predictive performance of various feature selection algorithms with different models for each concept. 

Concept Model 

Performance: Accuracy/Precision/Recall/F1/AUC 

Without feature 

selection 

Feature selection  method 

mRMR Chi2 Relief 

C1 

SVM .70/.80/.70/.64/.63 .90/.95/.90/.91/.94 .70/.75/.70/.72/.63 .80/.84/.80/.76/.67 

LR .75/.81/.75/.68/.58 .90/.91/.90/.88/.67 .80/.84/.80/.76/.67 .70/.79/.70/.74/.39 

KNN .65/.78/.65/.55/.56 .90/.91/.90/.89/.83 .80/.64/.80/.71/.50 .80/.93/.80/.84/.89 

DT .80/.80/.80/.80/.61 .80/.91/.90/.89/.83 .80/.80/.80/.80/.69 .80/.80/.80/.80/.69 

C2 

SVM .78/.77/.78/.76/.71 .89/.94/.89/.90/.94 .78/.78/0/78/.78/.75 .67/.68/.67/.67/.68 

LR .78/.77/.78/.76/.71 .94/.95/.94/.94/.83 .67/.79/.67/.61/.63 .67/.70/.67/.68/.67 

KNN .67/.67/.67/.67/.63 .78/.89/.78/.80/.86 .78/.78/.78/.78/.68 .89/.92/.89/.89/.92 

DT .78/.76/.78/.76/.66 .89/.91/.89/.89/.90 .78/.87/.78/.78/.83 .67/.79/.67/.61/.63 

C3 

SVM .78/.69/.78/.73/.47 .89/.90/.89/.87/.75 .78/.83/.78/.74/.67 .78/.67/.78/.68/.50 

LR .78/.83/.78/.72/.60 .89/.90/.89/.87/.67 .77/.78/.77/.77/.44 .78/.93/.78/.82/.88 

KNN .72/.77/.72/.75/.41 .89/.90/.89/.87/.75 .89/.94/.89/.90/.94 .89/.90/.89/.87/.75 

DT .78/.78/.78/.78/.44 .89/.94/.89/.90/.94 .78/.84/.78/.76/.75 .67/.92/.67/.73/.81 

C4 

SVM .77/.77/.77/.77/.60 .89/.94/.89/.94/.58 .78/.78/.78/.78/.68 .89/.79/.89/.84/.50 

LR .77/.75/.77/.74/.66 .89/.90/.89/.87/.75 .78/.61/.78/.68/.50 .78/.78/.78/.78/.44 

KNN .77/.76/.77/.75/.71 .89/.79/.89/.84/.50 .67/.70/.67/.68/.67 .89/.91/.89/.88/.83 

DT .82/.80/.82/.81/.63 .89/.91/.89/.88/.83 .67/.68/.67/.67/.68 .78/.78/.78/.78/.75 
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Appendix D 
 

The following are the feedback questions posed to students after the review activity to gauge their opinions on 

the individualized intervention tutoring approach. Students indicated their agreement by using a 5-point Likert 

scale. 

Q1. The teacher’s summary activities for each concept addressed in class were helpful. 

Q2. The programming remedial materials provided today will be helpful for exam preparation. 

Q3. The programming remedial materials provided today helped me review concepts that I am not familiar with. 

Q4. The programming remedial materials have helped me to review my knowledge of programming concepts, 

and these materials can help me improve my test scores.  

 

 

Appendix E 
 

Regression models for learning characteristics, learning strategies, and learning performance. 
Independent variable: Pre-test of learning performance 

Dependent variables β value Standard error t R2 Adjusted R2 F 

    .32 .28 7.92*** 

Constant 60.62 4.34 13.98***    

f3 .24 .38 2.99**    

f8 1.15 .12 2.11*    

Independent variables: Learning feature f3 (memo amount) 

dependent variables β value standard error t R2 Adjusted R2 F 

    .25 .22 11.01** 

Constant -51.30 20.40 -2.52*    

LS9(Help seeking) 18.30 5.52 3.32**    

Independent variables: LS9 (Help seeking) 

dependent variables β value standard error t R2 Adjusted R2 F 

    .13 .10 5.0* 

Constant 2.57 .50 5.16***    

LS1(Rehearsal) .27 .12 2.24*    

Note. *p < .05; **p < .01; ***p < .001. 

 

 

Appendix F 
 

Descriptive statistics of SRL ability pretest and learning performance posttest for high/medium/low groups for 

the rehearsal, elaboration, organization, and critical thinking strategies 

   Mean/SD Mean/ SD 

  Number SRL ability pre-test Learning performance post-test 

 group GC GE GC GE GC GE 

Rehearsal ReL 17 6 3.53/.31 3.33/.30 87.35/5.89 9.00/5.48 

ReM 20 19 3.97/.18 3.96/.22 85.75/11.50 91.05/7.56 

ReH 5 11 4.79/.25 4.88/.18 59.00/3.08 87.27/6.07 

total 42 36 3.91/.48 4.11/.58 83.21/15.65 89.72/6.86 

Elaboration ReL 10 19 3.67/.14 3.86/.26 85.50/1.66 89.21/7.31 

ReM 26 7 3.98/.20 4.00/.27 86.54/1.75 92.14/7.56 

ReH 6 10 1.85/.26 4.72/.25 65.00/27.57 89.00/5.68 

total 42 36 4.02/.41 4.11/.45 83.21/15.65 89.72/6.86 

Organization ReL 8 4 3.00/.29 3.13/.48 88.75/6.94 95.00/4.08 

ReM 30 20 3.82/.23 3.98/.21 85.00/11.22 89.25/7.48 

ReH 4 12 4.73/.32 4.75/.19 58.75/33.26 88.75/6.08 

total 42 36 3.76/.64 4.12/.56 83.21/15.65 89.72/6.86 

Critical 

Thinking 

ReL 19 11 3.28/.28 3.56/.32 84.74/11.48 88.64/8.09 

ReM 17 14 3.96/.12 3.96/.12 89.12/7.12 9.00/6.20 

ReH 6 11 4.72/.27 4.70/.21 61.67/26.20 9.45/6.88 

total 42 36 3.75/.56 4.05/.50 83.21/15.65 89.72/6.86 
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