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ABSTRACT: This study developed a physical computing game-design project that incorporates block-based 

programming, physical computing, and computer game design for Taiwan’s high school technology education 

curriculum to strengthen students’ computational thinking. The project asked students to develop a 

somatosensory computer game using a block-based programming language and physical computing devices. 

This study also attempted to enhance students’ attitudes toward programming, technology, and engineering, and 

to explore the effectiveness differences between students with different majors. The research findings indicate 

that the project may improve students’ computational thinking concepts, but did not improve students’ attitudes 

toward programming, technology, and engineering. While participating science major students’ perceptions and 

attitudes toward technology and engineering were significantly higher than those of social science majors, this 

study also found that students’ performance on their project product showed no significant difference between 

the different groups of majors. These results imply that the application of this project could be feasible and may 

be beneficial to deepen science majors’ interest in technology and engineering. 
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1. Introduction 
 

Computational thinking refers to the skills, cognitive procedures, and concepts that computer scientists and 

engineers use to operate computers and solve problems (Anderson, 2016). Wing (2006) noted that computational 

thinking should not be a skill exclusive to computer engineers; rather, it should be a fundamental skill that 

everyone should learn at an early age because such skills can also be used in daily life. This argument has 

prompted rapid development in computational thinking capabilities in education systems worldwide and led to 

computational thinking being viewed as a crucial skill for the 21st century. Many countries, such as the United 

States, the United Kingdom, the Netherlands, Australia, Poland, and South Korea, have prioritized cultivating 

computational thinking skills through their national K–12 education systems (Hsu et al., 2018; Voogt et al., 

2015). Taiwan also includes computational thinking as a vital educational goal for the technology education 

curriculum of the national 12-year basic education program (Ministry of Education, 2018). Computational 

thinking has rapidly become a skill to be cultivated in every student from an early age; accordingly, the proper 

methods to do so have become a focus of research on education. 

 

As programming education is an effective method of strengthening students’ computational thinking capabilities 

(Shute et al., 2017), many countries, such as the United Kingdom, Japan, and Finland, have begun to offer 

programming courses in primary schools (Seow et al., 2019). This has contributed to a gradual expansion of 

computer science education at the primary school level. However, programming is extremely difficult to learn 

for beginners, especially the complex traditional text-based programming syntax (Lu et al., 2020). To make 

programming easy to learn and interesting, visual/block-based programming languages are considered suitable 

for novice programmers (Price & Barnes, 2015). For example, Scratch, Makecode, and App Inventor have been 

widely used in computer programming courses in primary and secondary schools as they enable novice 

programmers to program by manipulating block-based languages without syntax. Taiwan’s technology education 

curriculum also recommends that students begin learning block-based programming languages in the third and 

fourth grades (Ministry of Education, 2020). Many studies have noted that using block-based programming 

languages can strengthen students’ computational thinking skills (Rodríguez-Martínez et al., 2020; Sáez-López 

et al., 2016).  

 

Block-based programming languages facilitate both programming and computer game design activities; for 

example, popular programming software Scratch uses a block-based programming language that enables students 

to develop game projects (Maloney et al., 2010). As students in the era of digital natives enjoy playing video 

games, having them design games using block-based programming languages can encourage them to engage in 
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programming (Mladenović et al., 2018). In addition, game production helps students learn design rules, generate 

and test creative ideas, and collaborate with others (Ke, 2014). Thus, computer game design is a form of learning 

by design (Robertson & Howells, 2008). Many studies also indicated that game design can contribute to the 

development of computational thinking skills (Garneli et al., 2015; Troiano et al., 2019).  

 

Using physical computing devices to help students learn programming has also become a common way to 

increase students’ interest in learning programming. Physical computing devices are programmable devices for 

which users write programs to control and develop creative, practical, and interactive hardware. Physical 

computing enables students to understand how programs work in physical objects and to touch the final product, 

which increases students’ interest, unlike traditional programming, where the results are displayed on a monitor 

(Hodges et al., 2013). In addition, physical programming can provide students with hands-on and building 

experience. Thus, physical programming is appropriate for technology and engineering education courses that 

specifically emphasize hands-on activities. Taiwan’s new technology education curriculum also recommends 

exposing elementary students to physical computing during the fifth and sixth grades (Ministry of Education, 

2020). With the rise of the maker movement, small and inexpensive physical computing devices, such as 

microcontrollers, have increasingly been used in programming and technology education; for example, BBC 

micro:bit is an inexpensive microcontroller with many built-in sensors. As it can be used with block-based 

programming software, such as MakeCode and Scratch, which are easy for novice programmers to use, the BBC 

micro:bit has been widely used in programming education in the United Kingdom since 2016 (Ball et al., 2016). 

Some studies have demonstrated that using BBC micro:bit for physical computing can strengthen students’ 

computational thinking skills (Song et al., 2020; Wu & Su, 2021).  

 

Therefore, to strengthen students’ computational thinking skills, learning block-based programming languages 

and applying them to game design or physical computing are common and feasible teaching strategies that make 

programming easy to learn and interesting. However, few studies have examined the effects of combining block-

based programming with physical computing and computer game design. The BBC micro:bit microcontroller has 

a built-in accelerometer sensor, which enables it to detect forces in three dimensions, as well as a radio antenna 

to communicate wirelessly with other micro:bits. These features enable programmers to turn a device into a 

handheld controller for somatosensory games by applying block-based programming. Thus, block-based 

programming languages, physical computing devices, and computer game design can be combined with a 

somatosensory game. 

 

In 2019, Taiwan began to implement a new technology education curriculum, which combines living technology 

education and information education that originally focused on hands-on practice and information technology, 

respectively. Thus, in addition to computational thinking, design thinking is a primary educational goal in the 

new curriculum (Ministry of Education, 2018). As the curriculum prioritizes computational thinking and hands-

on practice, providing students with opportunities to engage in physical computing design projects is a good 

choice for Taiwan’s new technology education curriculum. Therefore, this study proposed a physical computing 

game-design project that incorporates the block-based programming, physical computing, and computer game 

design for the high school technology education curriculum in Taiwan. That is, this project aimed to guide 

students to develop a somatosensory computer game using Scratch and BBC micro:bit as the programming 

language and the game controller, respectively. It also aimed to explore whether it can improve learning 

outcomes in terms of computational thinking concepts and attitudes toward computer programming, technology, 

and engineering.  

 

Numerous studies have explored gender differences in game design (Hsu, 2013), programming, and 

computational thinking skills (Mouza et al., 2020; Wu & Su, 2021). However, few studies have explored the 

differences of learning effectiveness in computational thinking among students with different majors. High 

school students in Taiwan are grouped into science or social science majors in 11th grade based on aptitude. 

Science majors study in depth on mathematics, physics, and chemistry, while social science majors focus on 

social science courses, such as geography and history. However, as the technology education curriculum is 

compulsory for Taiwan’s high school students, this study also explored the differences in the effects of the 

project among different majors. Specifically, the objectives of this study were, as follows. 

 

• Explore the changes and differences of students with different majors regarding computational thinking 

concepts and attitudes toward computer programming, technology, and engineering after participating in the 

physical computing game-design project. 

• Explore the differences of students with different majors regarding perceptions and project results after 

taking part in the physical computing game-design project. 
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2. Literature review 
 

2.1. Visual / block-based programming languages 

 

To date, many people advocate that providing programming courses is an important way to cultivate students’ 

computational thinking (Shute et al., 2017; Voogt et al., 2015). To facilitate learning, visual and block-based 

programming languages are used as the primary tool in introductory programming courses for K-12 students 

(Portelance et al., 2016). Visual programming languages provide a shortcut for producing programming code by 

using icons and graphical objects to represent instructions (Myers, 1990). They are suitable for young students in 

the era of digital natives because they enable students to solve programming problems through trial and error 

(Mladenović et al., 2018).  

 

Scratch, which is a visual programming software, was developed by MIT Media Lab to increase young students’ 

interest in programming (Maloney et al., 2010). Students program by dragging and dropping visual blocks, 

similar to building blocks, which makes it a block-based programming language. The ability to stack blocks is 

perfect for novice programmers (Price & Barnes, 2015) as it eliminates the restrictions of traditional textual 

languages (João et al., 2019). According to Brennan and Resnick (2012), Scratch involves seven concepts of 

computational thinking: sequences, loops, events, parallelism, conditionals, operators, and data, and students can 

transfer these concepts to other programming or non-programming tasks. Empirical studies have noted that 

Scratch facilitates the development of students’ computational thinking (Rodríguez-Martínez et al., 2020; Sáez-

López, 2016).  

 

Scratch can also shift the focus of programming activities from math problems to game design (Mladenović et 

al., 2018). As it simplifies game design, Scratch is widely used to design computer games to help students learn 

programming and develop computational thinking (Garneli et al., 2015). Kafai and Burke (2015) analyzed 55 

studies on game design-based learning and discovered that game production helped the students learn computing 

concepts. Zur-Bargury et al. (2013) used Scratch in a middle school’s computer science course and discovered 

that it helped the students learn the computational concept of loops. Mladenović et al. (2018) also discovered that 

using Scratch to design games was more effective than textual language-based software as it prevented 

misunderstanding of the computational concept of loops. 

 

 

2.2. Physical computing 

 

The term physical computing was derived from O’Sullivan and Igoe (2004) and refers to an interactive 

application that combines virtual and physical worlds through computer programming, sensors, microcontrollers, 

and tangible materials. It is also known as digital making or tangible programming (Kotsopoulos et al., 2017). 

Physical computing helps students learn about hardware, software, and design, and makes abstract programming 

concepts concrete (Kotsopoulos et al., 2017). It also encourages students to use their creativity to invent physical 

interactive devices (Przybylla & Romeike, 2014). As physical computing involves programming, embedded 

systems, and electronic engineering, physical computing education was previously only offered in university 

education; however, with the advances in physical devices and easily used visual programming, young students 

can now engage in physical programming (Jang et al., 2016). The maker movement has also facilitated the 

development of physical computing, as several making activities (e.g., creating robots) involve physical 

computing.  

 

The physical computing device, BBC micro:bit, is an inexpensive and programmable microcontroller. It has a 

variety of on-board modules, including LEDs, alight sensor, compass, accelerometer, and programmable buttons. 

The United Kingdom has used this device for programming education since 2016, and students in more than 50 

countries have used this device to learn programming and create physical products (Austin et al., 2020). In some 

studies, students have used the micro:bit to create paper-cutting lamps (Lu et al., 2021), headbands, stuffed 

animals (Klimová, 2020), and wireless remote-control car (Austin et al., 2020). Most students indicated that the 

micro:bit is easy to use and increased their motivation to learn programming (Gibson & Bradley, 2017). Some 

studies have also indicated that applying the micro:bit to physical computing activities improves students’ 

computational thinking skills (Song et al., 2020; Wu & Su, 2021). 
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3. Methods 
 

3.1. Physical computing game-design project 

 

This physical computing game-design project was implemented in an 11th-grade technology education course 

(two 50-min classes per week for 20 weeks). The first half of the project lasted 9 weeks. The teacher taught the 

students how to use Scratch and bDesigner, which provide more block-based instructions for the micro:bit, to 

control micro:bit with different sensing modules (buttons, accelerometer, buzzers, and LEDs). The students also 

learned to wirelessly transmit information between micro:bits to create a simple somatosensory game and used 

the IFTTT web service to upload the game scores to the cloud services. 

 

The second half of the project lasted nine weeks. The students worked in groups of three to five, depending on 

their preferences, and used Scratch and micro:bits to design a somatosensory game with any theme. Each group 

was provided with two mciro:bits. The first micro:bit was used to detect the player’s movement for the game 

controller. Each group was required to use various materials, such as cardboard, to create a game controller 

according to their game theme, and to affix the first micro:bit in the self-developed game controller. The second 

micro:bit was connected with a computer as the receiver and transmitter for receiving the movement information 

from the first micro:bit and transmitting the messages to the self-developed Scratch game. Finally, each group 

was asked to present their final products in the last week. 

 

 

3.2. Research procedure 

 

This experiment was conducted in a high school’s technology education course for 20 weeks. To explore the 

learning outcomes, during the first and last weeks, the students took pre-tests and post-tests on computational 

thinking concepts and completed attitude scales regarding computer programming, technology, and engineering. 

The participants were also required to indicate their perceptions of the project on a scale during the last week. 

Besides, students participated in the learning sessions from week 2 to week 10, and their project designs from 

week 11 to week 19. 

 

 

3.3. Research participants 

 

This study recruited 11th-grade students from a high school in southern Taiwan as these students accepted the 

new compulsory technology education curriculum. To explore the learning effectiveness differences between 

majors, one class of science majors (45 students) and two classes of social science majors (54 students) were 

selected. As four science majors did not participate in the entire experiment, 41 science majors and 54 social 

science majors remained, and they were divided into 10 and 14 groups, respectively, during the project. Ethical 

approval for this study was waived by the Taiwan Centers for Disease Control Policy # 1010265075, as this 

study was conducted in a general teaching environment for educational purposes, and all participants were 

provided the same teaching procedure and activities regardless of participants’ major. This study collected no 

data that could identify specific individuals. 

 

 

3.4. Research instruments 

 

3.4.1. Computational thinking test 

 

This study developed a computational thinking test including 10 items related to Scratch-based visual 

programming problems, which encompassed the seven computational thinking concepts of sequences, loops, 

events, parallelism, conditionals, operators, and data, as proposed by Brennan and Resnick (2012). Items 1–7 

tested a single concept each, and Items 8–10 tested multiple concepts simultaneously, and the highest total score 

was 100 points. Figure 1 presents an example item testing the computational thinking concept of the data. Figure 

2 presents an example item testing multiple concepts, namely data, operators, conditionals, and loops. The test 

was reviewed by a technology education teacher to ensure its appropriateness. According to a pilot study with 

134 high school students, the Kuder-Richardson reliability was .73. 
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Figure 1. Computational thinking test on the concept of data 

 
 

Figure 2. Computational thinking test on the concept of data, operators, conditionals, and loops 

 
 

 

3.4.2. Computer programming attitude scale 

 

This study referenced Korkmaz and Altun (2013) to create a computer programming attitude scale comprising 

three dimensions: confidence, preference, and usefulness. Each dimension contained four items, and each of 

which was answered on a 5-point scale. Items in the confidence and preference dimensions included “I am 

confident that I can learn computer programming” and “I like computer programming”, respectively. The item in 

the usefulness dimensions included “I don’t think programming will be useful in my life.” According to a pilot 

study with 134 high school students, the Cronbach’s α of this scale was .92. 

 

 

3.4.3. Technology and engineering attitude scale 

 

This study used the 9-item subscale of technology and engineering attitude in the STEM attitude scale, as 

developed by Faber et al. (2013), to evaluate the students’ attitude changes toward technology and engineering 

after the project. A 5-point scale was used for scoring the items, such as “I like to imagine creating new 

products,” “I am good at building and fixing things,” and “If I learn engineering, then I can improve things that 

people use every day.” According to a pilot study with 153 high school students, the Cronbach’s α of this scale 

was .91. 

 

 

3.4.4. The rubric of project assessment 

 

This study referenced the Creativity Product Analysis Matrix of Besemer (1998) to develop a project assessment 

rubric (Table 1). The students’ projects were evaluated in terms of two dimensions. The first was resolution, 

which evaluated the game’s logic and comprehensibility, playability, and innovativeness; the highest score was 

40 points. The second dimension was elaboration, which evaluated the game’s basic operation and the quality of 

the game’s software and hardware; the highest score was 60 points. Table 1 presents the scoring standards for 

each indicator. The evaluation standards were provided to the students as a reference before the project. All the 

final project products, as developed by the science and social science majors, were scored by two scorers using 

the abovementioned rubric, and the average scores were their final product scores. The scorer reliability was .94. 

 

 

3.4.5. Participation perception scale 

 

This study developed a 5-point scale with 11 items to understand the participants’ perceptions after the project. 

The questions assessed the participants’ feelings towards the project, as well as their knowledge acquisition, such 

as “I thought this project was interesting,” “I acquired knowledge and skills about micro:bit through this 
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project,” and “I felt a sense of achievement when we finished our somatosensory game.” An open-ended 

question was included at the end of this scale, which enabled students to further provide their perceptions and 

suggestions. The Cronbach’s α of this scale was .92. 

 

Table 1. Project assessment indicators 

Dimension Indicators Scoring standards Scores 

1. Resolution 1.1. Logical and 

understandable 
• Is the game understandable and logical? 

• Does the game have a name, goal, and rules?  

• Is the game based on somatosensory principles?  

0–20 

1.2. Playable • Is the game style interesting?  

• Can the game attract players to play constantly? 

0–10 

1.3. Innovative • Is the game original and creative as a somatosensory 

game? 

0–10 

2. Elaboration  2.1. Basic 

operation 
• Does the game work on Scratch? 

• Can the game be controlled using a wireless game 

controller? 

• Does the game run smoothly? 

0–20 

2.2. Quality of 

software 
• Are the game’s graphics and art refined? 

• Is the game’s software optimized? Does it have bugs? 

0–20 

2.3. Quality of 

hardware 
• Is the game controller well produced? 

• During the game, can the micro:bit be fixed firmly in 

the game controller without affecting the game 

performance? 

0–20 

 

 

4. Results 
 

4.1. Analysis of students’ computational thinking concepts 

 

To determine how the students’ understanding of concepts in computational thinking was changed by 

participating in the project, their pre-test and post-test scores in the computational thinking test were analyzed 

through paired sample t-test, and Table 2 presents the results. The science major group’s post-test scores (M = 

77.56, SD = 17.72) after the project were significantly higher than their pre-test scores (M = 68.29, SD = 18.01), 

t(40) = 3.53, p < .05. The social science major group’s post-test scores (M = 67.96, SD = 22.1) were also 

significantly higher than their pre-test scores (M = 54.07, SD = 19.18), t(53) = 4.69, p < .05. The results indicate 

that the proposed project may improve students’ computational thinking concepts, no matter the major. 

 

Students’ scores on different questions regarding computational thinking concepts were also explored, including 

seven single-concept questions (10 points per concept) and three multiple-concept questions (30 points). All 

students performed well in the computational thinking concepts of sequences, parallelism, and conditionals; 

however, the pre-test scores were low for the concepts of data, operators, loops, and multiple concepts, as shown 

in Table 2. After the project, the science major group’s post-test scores for the concepts of data (t(40) = 3.13, p < 

.05) and loops (t(40) = 2.5, p < .05) were significantly higher than their pre-test scores. The social science major 

group’s post-test scores for the concepts of data (t(53) = 2.7, p < .05), loops (t(53) = 4.01, p < .05), events (t(53) 

= 3.23, p < .05), and multiple-concepts (t(53) = 2.72, p < .05) were also significantly higher than their pre-test 

scores. In other words, the proposed project could help most students improve their computational thinking 

concepts regarding data and loops, and additionally improve social science major students’ computational 

thinking concepts regarding events and multiple concepts.  

 

To identify differences in the effectiveness of the project between students with different majors, this study used 

the total scores in the computational thinking pre-test and post-test scores as the covariable and dependent 

variable, respectively, to conduct a one-way analysis of covariance (ANCOVA). Before ANCOVA, the 

assumption of homogeneity of regression was conducted (F(1, 91) = 0.02, p >.05) and was not violated. The 

results of the ANCOVA were F(1, 92) = 0.27, p >.05, which indicated that after the effects of the covariates were 

excluded, and the factor of the student’s major did not significantly affect the post-test scores. The post hoc 

comparison using the least significant difference (LSD) also revealed no significant difference in post-test scores 

between the science (M = 73.26) and social science majors (M = 71.23). Moreover, this study used the pre-test 

and post-test scores of each concept and multiple-concept scores in computational thinking as the covariable and 

dependent variable, respectively, to conduct one-way ANCOVA, and the results indicated that the post-test 
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scores did not differ significantly between majors. In other words, although the science majors’ pre-test scores 

were significantly higher than those of the social science majors scores in the computational thinking test (t(93) = 

3.67, p < .05), after the effects of prerequisite abilities were excluded, the learning effectiveness for students with 

different majors to acquire computational thinking concepts had no significant difference. Therefore, the 

proposed project could help students improve their understanding of computational thinking concepts, and the 

improvement efficiency had no significant difference between students with different majors. 

 

Table 2. Results of Computational Thinking Test 

 Science major group Social science major group Science and social 

science major groups 

Pre-test Post-test t Pre-test Post-test t ANCOVA 

Total 68.29 77.56 3.53* 54.07 67.96 4.69* .27 

Sequences 10.00 10.00 0.00 9.44 9.81 1.43 .00 

Events 8.04 8.75 1.00 5.93 8.33 3.23* .01 

Parallelism 10.00 9.76 -1.00 8.89 9.44 1.14 .16 

Conditionals 8.78 9.27 0.81 8.15 8.15 0.00 1.98 

Data 3.90 6.59 3.13* 2.04 4.26 2.70* 3.30 

Operators 6.83 6.83 0.00 6.11 6.48 0.42 .04 

Loops 3.90 6.34 2.50* 1.85 5.00 4.01* .74 

Multiple 16.83 20.00 1.92 11.67 16.48 2.72* .88 

Note. *p < .05. 

 

 

4.2. Analysis of students’ computer programming attitudes 

 

To determine how the project changed the students’ attitudes toward computer programming, this study analyzed 

the students’ responses to the computer programming attitude scale before and after the experiment. To facilitate 

statistical analysis, the answers were converted into points, with strongly agree, agree, neither agree nor disagree, 

disagree, and strongly disagree corresponding to the scores of 5–1 points, respectively, and Table 3 presents the 

statistical results. The scores indicate that the attitudes of the science majors both before and after the project 

were overall positive. However, the paired sample t-test results indicate that the mean scores before (M = 3.51, 

SD = 0.84) and after the project (M = 3.46, SD = 0.99) did not differ significantly (t(40) = −0.88, p > .05). The 

social science majors’ attitudes were less positive before the project (M = 2.44, SD = 0.76), and the total mean 

score after the project still indicated a negative attitude (M = 2.49, SD = 0.80) without significant improvement 

(t(53) = 0.69, p > .05). These results suggest that before the project, the science majors had significantly more 

positive attitudes than the social science majors, and further analysis revealed a significant difference between 

the groups’ attitudes before the project (t(93) = 6.50, p < .05). However, after the project, students’ attitudes 

toward computer programming had no significant change, no matter the major. This result indicated that the 

proposed project may not improve students’ overall computer programming attitudes. 

 

This study also explored students’ scores in the subscales. The responses to the subscales indicated that despite a 

low score in confidence, the science majors had a positive attitude toward programming before the project. No 

significant change in any of the three attitude categories was observed after the project, as the paired sample t-

test results for the three sub-items indicated no significant difference (Table 3). The confidence and preference of 

social science major students toward programming before the experiment were low, and further analysis revealed 

that their initial confidence (t(93) = 6.53, p < .05) and preference scores (t(93) = 6.95, p < .05) differed 

significantly from those of the science majors. This is the primary reason that the social science majors had lower 

scores for overall attitudes toward computer programming before the project. However, the subscale results 

indicated that they found programming useful. After the project, the social science majors did not exhibit 

significant changes in any of the three attitude categories, and their confidence and preference toward computer 

programming still did not improve significantly, indicating a negative attitude. In other words, the project did not 

help most students improve their programming attitude regarding confidence, preference, and usefulness, 

regardless of major. The findings also indicated that the social science majors initially had a negative attitude 

toward programming in terms of their confidence and preference, which differed significantly from those of the 

science majors. 

 

To determine whether the major factor affected the improvement of students’ attitudes toward programming, the 

total mean pre-test scores of the programming attitude were used as a covariate, and the total mean post-test 

scores were used as a dependent variable, to conduct a one-way ANCOVA. Before ANCOVA, the assumption of 

homogeneity of regression was conducted (F(1, 91) = 1.08, p > .05) and was not violated. The results of the 

ANCOVA were F(1, 92) = 0.20, p > .05, indicating that after the effects of the covariates were excluded, the 
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factor of the student’s major did not significantly affect the post-test scores. The LSD post hoc comparison also 

revealed no significant difference in mean post-test scores between the science (M = 2.95) and social science 

majors (M = 2.88). Moreover, this study used the scores of each subscale in the programming attitude pre-test 

and post-test as the covariable and dependent variable, respectively, to conduct a one-way ANCOVA. The 

results also indicated that the post-test scores did not differ significantly between majors (Table 3). Therefore, 

the project may not have significantly improved the students’ attitudes toward programming in the short term. 

No difference in improvement efficiency was observed between the groups. 

 

Table 3. Results of computer programming attitude 

 Science major group Social science major group Science and social 

science major groups 

Pre-test Post-test t Pre-test Post-test t ANCOVA 

Mean 3.51 3.46 -.88 2.44 2.49 .69 .20 

Confidence 3.17 3.16 -.05 1.94 2.05 1.07 1.43 

Preference 3.41 3.40 -.06 2.00 2.12 1.17 .33 

Usefulness 3.96 3.82 -1.00 3.37 3.30 -.62 .70 

 

 

4.3. Analysis of students’ technology and engineering attitudes 

 

To determine whether the project changed the students’ attitudes toward technology and engineering, this study 

analyzed the students’ responses to the technology and engineering attitude scale, which ranged from strongly 

agree to strongly disagree, corresponding to scores of 5–1 points, respectively. The mean score of the science 

majors before the project was higher than 3 points (M = 3.67, SD = 0.76), and their attitude toward technology 

and engineering was positive. After the project, despite a slight improvement in their mean score (M = 3.76, SD 

= 0.62), no significant difference was observed by paired sample t-test (t(40) = 1.11, p > .05). The mean score of 

the social science majors before the project was lower than 3 points (M = 2.51, SD = 0.64), indicating that their 

attitude toward engineering and technology was negative. Their mean score after the project was also similar to 

that before the project (M = 2.52, SD = 0.67), indicating no significant change by paired sample t-test (t(53) = 

0.04, p > .05). Further analysis revealed a significant difference in mean scores between the groups before the 

project (t(93) = 10.94, p < .05). These results indicated that the project might not have significantly improved the 

students’ attitudes toward technology and engineering. The science majors maintained a positive attitude toward 

technology and engineering, whereas the social science majors still had a negative attitude.  

 

This study also performed a one-way ANCOVA using the mean pre-test and post-test scores as the covariate and 

dependent variable, respectively, to determine whether the factor of student’s major significantly affected their 

improvement in attitudes toward technology and engineering. Before ANCOVA, the assumption of homogeneity 

of regression was conducted (F(1, 91) = 0.06, p > .05) and was not violated. The results of the ANCOVA were 

F(1, 92) = 16.95, p < .05, η² = .16, indicating that after the effects of the covariates were excluded, the factor of 

student’s major significantly affected the post-test scores. The LSD post hoc comparison also revealed a 

significant difference in the adjusted mean post-test scores between the science (M = 3.37) and social science 

majors (M = 2.81), which means that the science majors exhibited a significantly larger change in technology and 

engineering attitudes than did the social science majors. Therefore, although the proposed project could not help 

all students significantly improve their attitudes toward technology and engineering, the improvement efficiency 

had a significant difference between students with different majors, thus, the project may improve the science 

majors’ attitudes more than those of the social science majors. 

 

 

4.4. Analysis of students’ project products 

 

Regardless of the students’ majors, all project teams accomplished different somatosensory games according to 

the project task. Figure 3 presents examples of the final products. One group of social science majors 

transformed the micro:bit into a dumbbell that controlled a jumping game when lifted. Another group of science 

majors combined the micro:bit with a door handle and created a somatosensory game involving unlocking doors. 

 

Students’ project products were scored according to the rubric shown in Table 1. To explore the differences in 

project performances between different majors, independent sample t-test was conducted on the students’ project 

scores, and Table 4 presents the analysis results of students’ project products. Although the social science majors 

had slightly higher total scores (M = 77.21, SD = 7.71) than the science majors (M =71.90, SD =11.95), the 

difference was nonsignificant (t(22) = -1.33, p > .05), indicating that their performance did not differ 

significantly. Regarding the scores on the dimension of resolution, the science (M = 29.90, SD = 4.31) and social 
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science majors (M = 30.21, SD = 2.91) had similar scores that did not differ significantly (t(22) = −0.21, p > .05). 

No significant differences in the scores for the three indicators in this dimension were observed between groups 

(Table 4). Thus, regardless of their major, most students produced logical games, and their games’ playability 

and innovativeness performance did not differ significantly between groups. Regarding the scores of the 

dimension of elaboration, although the total quality scores of the social science majors (M = 47, SD = 5.04) were 

slightly higher than those of the science majors (M = 42.00, SD = 7.96), the difference was nonsignificant. In 

addition, the scores of social science majors in each of the three indicators of the elaboration dimension were 

slightly higher than those of the science majors; however, no significant difference was observed. This suggests 

that no significant difference in outcome was observed between the groups. Therefore, although the social 

science majors exhibited poor performance in terms of their understanding of concepts in computational 

thinking, and they had a negative attitude toward computer programming before the project, their performance 

did not differ significantly from that of the science majors, and they all accomplished the project task. 

 

Figure 3. Students’ somatosensory games 

 
 

Table 4. Analysis of final products 

 Science major group 

(n = 10) 

Social Science major group 

(n = 14) 

t 

Total score 71.90 77.21 -1.33 

1. Resolution 29.90 30.21 -.21 

  1.1: Logical and understandable 15.90 16.64 -1.15 

  1.2: Playable 7.10 7.07 .05 

  1.3: Innovative 6.90 6.50 .56 

2. Elaboration 42.00 47.00 -1.89 

  2.1: Basic operation 14.70 16.50 -2.06 

  2.2: Quality of software 14.70 15.43 -.86 

  2.3: Quality of hardware 12.60 15.07 -1.72 

 

 

4.5. Analysis of students’ participating perception 

 

To identify the differences in students’ participating perceptions toward the project between the different majors, 

independent sample t-test was performed on the students’ responses to the perception scale. To facilitate 

statistical analysis, responses were converted to the scores of 1 (strongly disagree) to 5 points (strongly agree). 

While the participating perceptions of both the science (M = 3.84) and social science majors (M = 3.55) were 

positive, the t-test results were t(93) = 2.13, p < .05, indicating that the mean score of the science majors was 

significantly higher than that of the social science majors. This suggests that the science majors’ impressions of 

the project were more positive than those of the social science majors in terms of satisfaction and gain. 

 

Analysis of the students’ responses to the open-ended questions on the scale indicated that most students were 

satisfied with the project. Social science majors stated, “Designing a somatosensory game on my own was a 

unique experience,” “Now I know how to apply programming for a range of tasks,” and “I learned how to create 
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new games with my team members.” Science majors stated, “The project helped me understand Scratch and 

micro:bit more,” “This was my first experience using a microcontroller to execute a program I wrote, and it was 

really exciting and might help me in the future,” and “I learned a lot about micro:bit.”  

 

 

5. Discussion 
 

This study found that both science and social science major groups’ post-test scores on computational thinking 

tests were significantly higher than those of their respective pre-test scores after the project, and the results of 

ANCOVA showed no significant difference between the groups. In other words, students significantly improved 

their scores in computational thinking, and the improvement efficiency did not differ from their initial concepts 

of computational thinking after participating in the project. Thus, this project helped all students strengthen their 

computational thinking concepts. The findings demonstrate that the combination of block-based programming, 

physical computing, and computer game design may be beneficial to students’ computational thinking. The 

findings also support those of other studies regarding the use of Scratch, physical computing, and game design to 

improve students’ computational thinking skills (Mladenović et al., 2018; Rodríguez-Martínez et al., 2020; Sáez-

López, 2016; Wu & Su, 2021; Zur-Bargury et al., 2013). 

 

Moreover, the analysis results of the students’ computational thinking test also indicated that the changes in their 

scores were mainly due to the significant increase in all students’ computational thinking concepts regarding data 

and loops, and social science majors’ events concept and multiple concepts. However, the students’ 

computational thinking concepts of data, operators, loops, and multiple concepts can still be improved. These 

results are consistent with those of other studies, in which novice programmers exhibited poor performance in 

terms of their understanding of data, operators, and loops concepts (Grover & Basu, 2017). 

 

Regarding students’ attitudes toward computer programming, technology, and engineering, this study found that 

students with different majors differed significantly in their attitudes before the project; the social science majors 

had negative attitudes, lacked confidence and preference for programming, and were uninterested in technology 

and engineering, whereas the science majors exhibited positive attitudes. After the project, the students’ attitudes 

did not differ significantly from those before the project. The social science majors’ confidence and preference 

for programming did not increase significantly, and their attitudes toward technology and engineering remained 

similar, as did those of the science majors. This suggests that the project did not significantly improve the 

students’ attitudes toward computer programming, technology, or engineering, which may be because the project 

was too short to result in immediate changes in attitude or because the students had already established career 

goals related to their majors. Nonetheless, the project could still be effective to influence science major students’ 

attitudes toward technology and engineering. The ANCOVA analysis results of the technology and engineering 

attitude scale suggests that the project improved the science majors’ technology and engineering attitudes more 

than the social science majors’ attitudes. 

  

The science and social science majors did not significantly differ in terms of the scores for their project products, 

which indicates that although science majors initially exhibited a deeper understanding of programming concepts 

and more positive attitudes toward programming and technology creation than the social science majors, their 

somatosensory games were not significantly superior to those of social science majors. In addition, although the 

social science majors exhibited poor performance in terms of their initial understanding of the concepts of 

computational thinking and lacked interest in programming and technological creation, they completed the 

project successfully after a semester of study and activities. In other words, the difficulty level of the proposed 

project was appropriate, and the approach may be appropriate for all students. Therefore, this project could 

continue to be implemented in Taiwan’s technology education curriculum.  

  

Regarding the students’ perceptions toward the project, this study found that most students were satisfied and 

indicated that it helped them acquire knowledge. This supports the above discussion, indicates that the difficulty 

of the project was appropriate, and explains the finding that social science majors can produce the same quality 

products as the science majors and improve their computational thinking. The analysis results also revealed that 

science majors’ scores for participating perception were significantly higher than those of the social science 

majors, indicating that the science majors enjoyed the project more than the social science majors; however, this 

result might be related to the students’ differences in attitudes toward programming and technology between 

majors. 
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6. Conclusion 
 

This study combined block-based programming, physical computing, and game design in a project for Taiwan’s 

high school technology education curriculum to increase interest in computer programming and technology and 

strengthen computational thinking. This study also explored differences in the project’s effects between majors, 

and the results indicate that the project may improve students’ computational thinking concepts; however, the 

project may not improve students’ attitudes toward programming, technology, and engineering. Regarding the 

comparisons of different majors, this study found science majors exhibited better performance in their 

computational thinking test, and they had significantly more positive attitudes toward programming and 

technology than the social science majors before the project. Nevertheless, no significant differences were 

observed in the computational thinking concepts, programming and technology attitudes, and the final product 

scores after the project between the groups. These findings imply that the proposed project could be beneficial to 

all students and feasible for a compulsory technology education curriculum. Moreover, this study also found that 

science majors’ scores regarding their participation perception and technology and engineering attitude were 

significantly higher than those of the social science majors, which implies that this project may be beneficial to 

deepen science majors’ interest in technology and engineering.  

 

Therefore, this proposed project can continue to be promoted in Taiwan’s technology education curriculum; 

however, future research should increase the number of participants to further verify the effectiveness between 

different majors. In addition, more rigorous methods can be conducted in the future to assess students’ projects. 
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