
Cui, Z., Ng, O., & Jong, M. S.-Y. (2023). Integration of Computational Thinking with Mathematical Problem-based 

Learning: Insights on Affordances for Learning. Educational Technology & Society, 26(2), 131-146. 

https://doi.org/10.30191/ETS.202304_26(2).0010  

131 
ISSN 1436-4522 (online) and 1176-3647 (print). DOI 10.30191/ETS. This article of Educational Technology & Society is available under Creative Commons CC-BY-

NC-ND 3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). For further queries, please contact Editors at ets.editors@gmail.com. 

 

Integration of Computational Thinking with Mathematical Problem-based 

Learning: Insights on Affordances for Learning 
 

Zhihao Cui1, Oi-lam Ng1* and Morris Siu-Yung Jong1,2 
1Department of Curriculum and Instruction, The Chinese University of Hong Kong, Hong Kong SAR, China // 

2Centre for Learning Sciences and Technologies, The Chinese University of Hong Kong, Hong Kong SAR, 

China // cuizhihao@link.cuhk.edu.hk // oilamn@cuhk.edu.hk // mjong@cuhk.edu.hk 
*Corresponding author 

 

ABSTRACT: Grounded in problem-based learning and with respect to four mathematics domains (arithmetic, 

random events and counting, number theory, and geometry), we designed a series of programming-based 

learning tasks for middle school students to co-develop computational thinking (CT) and corresponding 

mathematical thinking. Various CT concepts and practices articulating the designated mathematical problems 

were involved in the tasks. In addition to delineating the design of these learning tasks, this paper presents a 

qualitative study in which we examined 74 students’ learning outcomes and characterized their CT and 

mathematical thinking co-development as they accomplished the tasks. The research results demonstrate the co-

development of both mathematics- and CT-related concepts and practices in the four mathematics domains. Two 

types of interactions are identified: (i) applying mathematical knowledge to construct CT artifacts and (ii) 

generating new mathematical knowledge with CT practice. The new insights provided by the present work are 

threefold. First, from a mathematical learning perspective, the nature of the solution processes of the designed 

problems should not be immediately obvious. Second, from a technology-enhanced learning perspective, the 

dynamic representations and immediate visual feedback afforded by the programming tool are beneficial to 

student learning. Third, from a pedagogical perspective, the room for customization offered by both the designed 

problems and programming tools can provide affordances for learning. 
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1. Introduction 
 

Computational thinking (CT) can be regarded as a mode of problem solving and thinking with computational 

tools and as a fundamental skill required in daily life (Wing, 2006; Wing, 2011). In the current development of 

teaching and learning with computing, much emphasis has been placed on integration with other disciplines and 

fields (Guzdial & Soloway, 2003); this represents a shift away from focusing on computer science education in 

isolation. In light of science, technology, engineering, and mathematics (STEM) education has been a global 

educational focus today (Jong, Song, Soloway & Norris, 2021), CT is regarded as a kind of analytical thinking 

that shares close connections with all four involved disciplines (Leung, 2020), and especially with mathematics 

(Baldwin et al., 2013). The use of programming and the application of CT to learning mathematics can be traced 

back to Papert (1980), who argued that CT could have a unique effect on mathematical thinking and learning 

because it provides learners with a medium for exploring patterns and a logical structure for modeling and 

investigating mathematical relationships. More recently, a systematic illustration of the connection between 

mathematics and CT was proposed by Weintrop and colleagues (2016), who suggested that various CT practices, 

including data practices, modeling and simulation practices, computational problem-solving practices, and 

systems-thinking practices, can play a supportive role in mathematical practices and be mutually promoted. 

Recent reviews have revealed considerable literature growth around the integration of CT and mathematics in 

recent decades (e.g., Hickmott et al., 2018; Ye et al., 2023), arguing for the multi-faceted linkage of CT and K-12 

mathematics education. Although these reviews evince the reciprocal relationship between CT and mathematical 

concepts, the question of how CT and mathematics can be co-developed remains underexplored (Nordby et al., 

2022; Ye et al., 2023), as stated by Hickmott et al. (2018) “studies that explicitly linked the learning of 

mathematics concepts with computational thinking were uncommon in the reviewed literature” (p. 65). Recently, 

there have been studies exploring CT integration for learning in specific mathematical domains, such as 

combinatorics (De Chenne & Lockwood, 2022), number theory and mathematical modeling (Benton et al., 2018; 

Ng & Cui, 2021), and geometry (Ng & Cui, 2021; Pei et al., 2018), as well as others investigating challenges that 

emerge when engaging in mathematical problem solving within a programming environment (Cui & Ng, 2021; 

DeJarnette, 2019; Ng et al., 2021; Weng et al., 2022). However, as argued by Lockwood and De Chenne (2019), 

while programming seems to be effective in learning mathematics for certain topics, it cannot be concluded that 

it would be superior to paper-and-pencil methods in all mathematics domains. Therefore, further research is 

needed to understand the interplay between these two modes of thinking (i.e., mathematical and CT), especially 
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in terms of shedding light on the affordances of simultaneously using two modes of thinking, as well as on the 

challenges students may experience when solving mathematical problems in programming contexts. 

 

To this end, there is still a great deal of room to investigate the integration of CT with mathematics education, 

especially in K–12 contexts. The two most significant remaining questions in this regard are (i) how CT and 

mathematics learning outcomes can be co-developed (Ye et al., 2023) and (ii) connecting specific mathematical 

domains for integration with programming (Lockwood & Morken, 2021). In response to these research gaps, this 

study addresses the characteristics of CT-based mathematics instruction and student learning in such an 

environment. Our goals in this study are twofold. First, we illustrate the design elements of the CT-based 

mathematical tasks from four mathematical domains (i.e., arithmetic, random events and counting, number 

theory, and geometry) and highlight their impact on students’ learning outcomes. Second, we are interested in 

identifying the affordances and barriers brought forward by problem-based mathematics learning in the block-

based programming environment, Scratch. Specifically, we aim to address the following research questions 

(RQs): 

 

• How is CT co-developed with problem-based mathematics learning in designed tasks in each of the 

following mathematical domains: arithmetic, random events and counting, number theory, and geometry? 

• How might the design of CT-based mathematical activities provide affordances for student learning in each 

of these domains? 

 

 

2. Conceptual framework 
 

2.1. Computational thinking, concepts, and practices 

 

In the past decade, researchers have made efforts to develop conceptual and methodological frameworks for 

learning and teaching CT (e.g., Brennan & Resnick, 2012; Ho et al., 2021; Jong et al., 2020; Román-González et 

al., 2017; So et al., 2020). Among them, Brennan and Resnick (2012) proposed one of the most popular 

frameworks in which CT can be addressed from three dimensions: computational concepts, computational 

practices, and computational perspectives. They identified seven computational concepts (sequences, loops, 

parallelism, events, conditionals, operators, and data), four sets of computational practices (incremental and 

iterative, testing and debugging, reusing and remixing, and abstracting and modularizing), and three kinds of 

computational perspectives on the world and oneself as a programmer (expressing, connecting, and questioning). 

In this study, we considered the three dimensions of CT proposed by Brennan and Resnick as the learning goals 

of CT. 

 

Conversely, another group of researchers has explored the relationship between CT and thinking practices in 

other disciplines, such as mathematics. For example, Sneider et al. (2014) created a Venn diagram illustrating the 

overlap between mathematical thinking (MT) and CT, wherein the common area included problem solving, 

modeling, analyzing, and interpreting data, as well as skills in statistics and probability. They explained that 

outside the intersection of MT and CT, more distinct MT (e.g., counting and geometry) and CT (e.g., 

programming and data mining) practices are found. Weintrop et al. (2016) formulated a taxonomy integrating 

mathematics and CT into four categories: data practices, modeling and simulation practices, computational 

problem-solving practices, and systems-thinking practices. This mapping enabled them to produce framework 

statements that reflect how CT is applied—particularly in the context of mathematics and science—as a way to 

support integrated instruction that mutually enriches student learning in each discipline. The taxonomy was 

informed by the research finding that computational problem-solving practices, such as algorithm development 

and creating computational abstractions, can help learners develop a deep understanding of mathematical and 

scientific phenomena (e.g., Wilkerson-Jerde, 2014). We believe that this CT practice taxonomy could serve as a 

strategy for learning and problem solving, especially within the scope of integrating CT into problem-based 

mathematical learning. 

 

 

2.2. Affordance for learning 

 

“Affordance” was introduced by Gibson (1979) to describe the relationships that exist between an object or 

environment and an organism. The subsidiary idea is that affordances provide both opportunities and constraints, 

which are not opposites but complementary. Norman (1999) proposed one of the most notable reformulations of 

the concept of affordance with respect to “real” affordance and “perceived” affordance, according to which real 

affordance refers to the physical characteristics of a device or interface that allow its operation, as described by 
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Gibson (1979), while perceived affordance can be defined as the apparent characteristics of a device that provide 

clues to its proper operation. Differing from Gibson (1979), Norman (1999) recognized that the object or 

environment could be both symbolically and physically designed and that the term “affordance” could be used 

for the purpose of design. Building on the work of Gibson (1979) and Norman (1999), Hartson (2003) further 

defined the term “affordance” as cognitive affordance (Norman’s perceived affordance) and physical affordance 

(Norman’s real affordance); in this scheme, affordance is a “design feature” that “aids, supports, facilitates, or 

enables thinking, knowing, and/or doing something” (p. 319). In the context of educational research, educational 

affordances are “those characteristics of an artifact (e.g., how a chosen educational paradigm is implemented) 

that determine if and how a particular learning behaviour could possibly be enacted within a given context (e.g., 

project team, distributed learning community)” (Kirschner, 2002, p. 14). In the mathematics education context, 

Bishop and colleagues (2014) provide another example of cognitive affordance, referring to individuals’ 

understanding or knowledge that may lead to successful learning progress or problem solving within the targeted 

content.  

 

Informed by Kirschner’s educational affordance and Bishop’s cognitive affordance in mathematics learning, we 

propose a framework for understanding the potential affordance of integrating CT with mathematics in the 

current study (Figure 1). First, we emphasize design features, which include physical and symbolic (or 

intangible) aspects (Norman, 1999). For example, in the context of the present study, the block-based 

programming environment could be treated as a physical design affordance for learning CT, because it was 

something with which the students could directly interact. Moreover, we identified the learning content (i.e., the 

four mathematical domains of arithmetic, random events and counting, number theory, and geometry) as an 

intangible design affordance for supporting learning behavior (Kirschner, 2002). For instance, certain 

geometrical content is suitable to accompany visual representations to support programming practices and thus to 

construct, explore, and verify the properties of geometric figures; this represents a case of the selection of 

learning content to afford students’ CT-based mathematics learning. Second, we highlight the support feature of 

affordance in terms of providing both opportunities and constraints. This can be exemplified by the use of 

computing to make arithmetic calculations with ease (i.e., opportunity); however, the students must correctly 

program to perform the calculations (i.e., constraint). In summary, CT-based mathematics instruction may 

provide a unique affordance for student learning from the perspectives of design and support. 

 

Figure 1. The two features of affordance in the current study 

 
 

 

3. Methodology 
 

3.1. Research design, participants, and context 
 

This study is situated in a series of programming-based teaching interventions that address various mathematical 

domains. It employed a design-based research (DBR) methodology consisting of three iterative cycles of 

implementations to achieve its aims. DBR is conducted “with the intent of producing new theories, artifacts and 

practices that account for and potentially impact learning and teaching in naturalistic settings” (Barab & Squire, 

2004, p. 2). During the three cycles of implementation, the researchers designed and refined a total of eight 

programming-based mathematical tasks in partnership with mathematics schoolteachers and computer science 

experts. 
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A total of 74 participants (57 male and 17 female) ranging from fifth to eighth grade (ages 10 to 14) were 

recruited from various primary and secondary schools in Hong Kong and provided informed consent to 

participate in the study. According to their self-reported previous experience in programming before the study, 

some of the participants had experienced some very basic functions related to programming (such as motion 

control and simple conditions) in Scratch. They had never been engaged in using programming to solve 

mathematical problems or in learning more comprehensive CT concepts (e.g., variables and iteration) and 

practice (e.g., modeling and remixing). Hence, their prior knowledge was considered to have no significant 

influence on the learning outcomes of the current study. 

 

 

3.2. Selected mathematical domains and tasks 
 

Table 1 lists the mathematical domains and tasks developed and implemented in the study, labeled (1)–(8). 

Specifically, the first cycle of implementation employed tasks (1) and (6); the second cycle of implementation 

addressed tasks (1), (2), (3), and (8); and the third cycle of implementation involved tasks (4), (5), (7), and (8). 

All the tasks were designed with authentic contexts with real-life relevance and were open-ended in nature, 

which required knowledge from the respective mathematical domains to solve. In summary, the tasks can be 

categorized into four major mathematical domains (arithmetic, random events and counting, number theory, and 

geometry), thus allowing the research questions to be explored. Noting that most of the selected mathematical 

content (i.e., geometric sequences, probability, and fractal geometry) had not been introduced in formal lessons 

prior to the study, it can be inferred that both mathematical and CT concepts were developed by the students in 

the current study. More information about the tasks implemented in this study is provided in Appendix 1. 

 

Table 1. Selected domains and tasks with corresponding mathematical and CT concepts 

Domain Task name Mathematical concept involved Expected product 

Arithmetic Two Savings problem 

(1) 

Sequence and series Numerical output and their 

visual representations 

Fibonacci Sequence (2) Recursive sequence 

Random events 

and counting 

Dice Rolling problem 

(3) 

Random events with equally 

likely outcomes 

Value output of variables/visual 

representation of distributions 

Dart Throwing problem 

(4) 

Random events with unequally 

likely outcomes 

Number theory Count to 21 or 100 

problem (5) 

Counting, inductive and 

deductive reasoning 

A math game with inputs and 

computer auto-reactions 

Prime Detector (6) Divisibility rules, factors and 

multiples 

Text and/or list output 

Geometry Drawing Polygons (7) Exterior and interior angles Multiple polygons 

Drawing Fractals (8) Fractal and recursion Fractal geometry 

 

 

3.3. Procedures 

 

The three cycles of implementation employed a similar set of procedures. Participants attended three to five 

programming sessions involving various mathematical problem-based learning in increasing order of 

complexity. Each session took approximately two hours. In the first part of each session, the course instructor 

conducted whole-class instruction with the goal of scaffolding essential prerequisite mathematical and 

programming knowledge for solving the target problems in the respective sessions. Afterward, the students 

would follow demonstrations led by the course instructor, answer questions posed by the instructor, and 

complete some guided activities. The remainder of each session (around one hour) was devoted to students’ 

individual and collaborative problem solving, in which teaching assistants, with a teacher–student ratio of 

roughly 1:6, provided the necessary assistance. Participants were encouraged to communicate with peers about 

their thoughts and plans to solve the problem, while this process was video-recorded. After each session, 

participants wrote reflections on the tasks; this included critically discussing what they had learned and the 

challenges they had met during the session. By the end of the implementation, selected students were invited to 

participate in semi-structured post-course interviews. The semi-structured questions included: What was 

something new you learned in the course? Were there any challenges or difficulties that you met, and how did 

you overcome them? How did you come up with ideas for solving the problem? 
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3.4. Data analysis 
 

We adopted a case study as the analytic methodology. Case study complements in-depth analyses of learning 

“given the need for extended, open, and careful consideration of data” (Parnafes & diSessa, 2013, p. 7). It takes 

into account the intriguing parts and significant components of the subject, which is suitable for answering 

research questions such as those proposed in the current study. During the DBR research, we collected data, 

including programming artifacts, classroom observation notes, video recordings, field notes, and student 

interviews. The researchers first reviewed all the artifacts constructed by the students, as well as the video and 

audio recordings of the class. Then, by combining these with the classroom observation field notes, the 

researchers selected episodes and artifacts that characterized the students’ cognitive development of both CT and 

mathematics in each mathematical domain. For the selected episodes, we employed a constant comparative 

strategy (Corbin & Strauss, 2015) to narrow down the selection of episodes and artifacts so that they 

demonstrated and characterized the students’ learning outcomes from both mathematical and CT perspectives. 

The student interviews served as supplemental evidence for triangulating the results. With regard to the nature of 

affordance according to the proposed framework, we identified how the present instructional design could 

provide affordances for the co-development of CT and mathematics. 

 

To examine students’ CT development in this study, we adopted two influential frameworks—those of Brennan 

and Resnick (2012) and Weintrop et al. (2016)—to analyze the students’ CT development as encompassing a set 

of CT concepts and practices (Table 2). The shortened list of CT concepts and practices served as the coding 

criteria for demonstrating students’ development of CT when reviewing the data. For example, the CT concepts 

in use could be identified by the programming codes used by the students, such as “if … then” and “repeat” with 

respect to the CT concepts of conditionals and loops, respectively. For CT practices, we referred to the students’ 

programming processes over a period of time in terms of what kinds of subtasks they were tackling within the 

CT environment, e.g., modeling, testing, and debugging (Weintrop et al., 2016) or reusing and remixing 

(Brennan & Resnick, 2012). 

 

Table 2. CT concepts and practices involved in the current study 

CT concepts Description 

Loop A mechanism for running the same sequence multiple times 

Sequence A particular activity or task expressed as a series of individual steps or instructions 

that can be executed by the computer 

Condition Make decisions based on certain conditions, which supports the expression of 

multiple outcomes 

Iteration The outcome of each iteration is the starting point of the next iteration 

Variable Value that contains some known or unknown quantity 

Subroutine A complete executable packaged program instruction that can be used in other 

programs at any time 

Boolean logic A form of algebra in which all values are either True or False. These values are 

used to test the conditions. 

CT practices Description 

Modelling and simulation Using computational models to understand a concept, to find and test solutions; 

assessing, designing, and constructing computational models 

Algorithmic thinking A series of steps to solve a problem 

Reusing and remixing Building on others’ work (i.e., ideas and code) to create things that are much more 

complex 

Testing and debugging Developing strategies (e.g., by trial and error) to deal with and anticipate problems 

 

To investigate students’ mathematical development, we designed tasks targeting certain mathematical concepts 

in a particular domain, as illustrated in Table 1. The list served as the coding criteria to select artifacts and extract 

episodes to provide evidence for students’ mathematical development from the data. For example, the concept of 

random events of equal likelihood can be identified by how they inductively infer the law of large numbers from 

simulating dice rolls in the reflection questions. In addition, we consistently employed transcripts to analyze the 

students’ discourse while engaging with the mathematical problems in the programming environment to 

triangulate data from different sources and ensure the credibility of the qualitative results. 
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4. Results 
 

The following subsections present the results with respect to the designed tasks in four mathematical domains—

(i) arithmetic, (ii) random events and counting, (iii) number theory, and (iv) geometry—with representative 

artifacts and episodes to detail, provide evidence for, and situate the students’ development in both mathematics 

and CT. In each domain, to respond to RQ1, we first demonstrate how each type of mathematical content was 

co-developed with CT concepts and practices during the designed CT-based mathematics activities (intangible 

affordance). Then, in response to RQ2, we explain the importance of the design feature of the tasks that provided 

affordances for students’ knowledge or skill acquisition. 

 

 

4.1. Arithmetic 

 

4.1.1. Co-development of CT and mathematics 

 

Arithmetic thinking was co-developed with the CT concepts of variables and iterative operations. As the first 

problems tackled by the students, the CT-based arithmetic tasks were meant for the students to begin translating 

their arithmetic procedures, such as computing 3 + 222 + 222 = 447 and 3 + 6 + 12 = 21 in the Two Savings 

problem, and finding the next term in a Fibonacci sequence by adding the previous two terms using the Scratch 

programming language. Given the programming environment’s ability to take care of the arithmetic procedures 

effortlessly, the respective problems stimulated the students to use effective strategies to ensure that their 

programs displayed the correct sequence. For this, the use of variables was called for, where (i) a variable was 

something that took on different values, and (ii) variables could be operated iteratively by using codes such as 

“set balance to balance + 222.” In other words, the students linked their mathematical thinking, which involved 

searching for patterns and determining the next term in the sequence, with variables in a CT sense, knowing that 

as long as something changed, they could use a variable to represent this changing quantity. Moreover, the use of 

variables was complemented with iterative operations by using the [repeat] code in Scratch, which enabled a 

quantity to change by the repeated use of a certain rule. As shown in Figure 2a, a typical solution to the 

Fibonacci Sequence problem was to operate three variables by setting “the third number” equal to the sum of the 

“first number” and “second number.” In mathematical language, this was precisely 𝑇𝑛 = 𝑇𝑛−1 + 𝑇𝑛−2. The concept 

of iterations came into play in coding the next few lines because the “second number” and “third number” 

become the new “first number” and “second number,” respectively, generating an iteration process, as illustrated 

in Figure 2b. Hence, we regard the students’ arithmetic thinking as co-developing with the CT concepts of 

variables and iterative operation. 

 

Figure 2. Programming codes of the Fibonacci Sequence and the iteration idea 

 
(a)                                                                             (b) 

 

4.1.2. Affordance from the design feature of the tasks 

 

The same two CT-based mathematical activities afforded the students the opportunity to visualize and simulate 

the arithmetic (e.g., 3, 225, 447, …) and geometric progressions (e.g., 3, 6, 12, …) posed in the problems. 

Compared to a paper-and-pencil environment, which would likely have prompted the students to use a static 

formula, such as 3 + 222(n – 1) to describe the nth term of the sequence, the students in this study used the 

programming environment to simulate each term dynamically, using the codes mentioned above to visualize the 

growth of various sequences one term at a time. Furthermore, some students used visual representations to show 

the amount of growth from one term to the next, which can be significant in improving their understanding of the 

differences between arithmetic and geometric sequences. On the other hand, the programming techniques 

required were considered constraints in solving the problems. As one student commented, “The numbers are too 

big, so it’s nearly impossible for a human brain to do it, but I don’t know how a computer thinks in this program. 

It took me three days to complete that task.” This suggests that, although the student recognized the affordances 
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of computing in dealing with large numbers, he struggled with solving the problem in a computational context 

due to being unfamiliar with the programming tools. 

 

Regarding the Two Savings problem, it was observed that the design of the problem provided affordances that 

supported the students in modeling a real-life scenario that involved arithmetic operations. After successfully 

creating a program that simulated the two saving plans, a final challenge remained: namely, modeling the 

situation in which a deposit was to be made every day for the first saving plan, as opposed to making deposits 

only on weekends for the second saving plan. With this type of problem design, we observed that the students 

used various nonroutine strategies to model the situation successfully. For example, some students used different 

keys to denote different parameters, such as using the “D” key to denote the passing of weekdays and “W” for 

the passing of weekends. Other strategies included (1) using seven days or a week as a unit, that is, within each 

week, repeating the deposit seven times for the first plan and two times for the second plan (Figure 3a), and (2) 

creating a new variable (i.e., day counter) to serve as a hint regarding the day of the week, and then operating the 

deposit accordingly (Figure 3b). This indicated that students experienced and developed the skills of modeling 

and simulation in computational practice. 

 

Figure 3. Different approaches to modeling for the Two Savings problem 

 
(a)                                                                     (b) 

 

 

4.2. Random events and counting 

 

4.2.1. Co-development of CT and mathematics 

 

The concept of randomness, as appropriated by the randomize function in Scratch, was codeveloped in the 

students’ probabilistic thinking in mathematics. In the first stage of the Dice Rolling problem, the students were 

guided to simulate the situation of rolling six dice at once by using the randomize function and calculating their 

sums. As shown in the online chat record, the students initially held certain common-sense expectations 

regarding the concept of randomness: “I found that Scratch’s random is fake … it has a pattern.” This comment 

was in agreement with other students’ observations: “I got 22 five times (in 20 clicks),” “21 never happened for 

me,” and “I got three 28s in a row (20 clicks).” These expressions suggest that the students had wrongly related 

the computer-generated randomized results to their expectations of a uniform distribution within only a small 

number of trials. In other words, they thought that when the dice were rolled randomly, a certain number should 

not appear at such a high frequency (i.e., five instances of 22 in 20 rolls), or a certain number should have 

appeared (i.e., 21 never happened but “1 + 2 + 3 + 4 + 5 + 6 = 21”). These conversations suggested that the 

students were rethinking the meaning of “randomness,” both in a mathematical and computational sense: as they 

obtained more and more trials with the help of loops in Scratch, the students began to see that the observed 

frequency would mirror the expected distribution when performing random events. 

 

At the same time, the students’ concept of experimental probability was found to co-develop with the CT 

practice of simulation. In both the Dice Rolling problem and the Dart Throwing problem, the students were 

encouraged to simulate the process a large number of times to observe the distribution of the results. As 

illustrated in Figure 4a, in order to design a fair scoring system, one student ran the dart-throwing simulation 

20,000 times to find the frequency distribution with which the dart hit the squares. As such, he proposed a 

scoring system that incorporated his observed frequency distribution. The square that was hit most frequently 

should be scored the lowest, and so on. Furthermore, using the data obtained from 20,000 simulations, the 

student designed a scoring system (A = 22, B = 12, C = 6, D = 2.5, E = 1) according to the ratio of the number of 

times each square was hit (i.e., the scoring system should be inversely proportional to the ratios). Another student 
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simulated the dart-throwing situation 1,000 times, and by observing the experimental outcomes of the darts’ 

landing points with the area of the dartboard, he inferred that the two quantities were proportional. A similar 

observation was also found in the Dice Rolling problem. By visualizing the outcomes of the targeted sums in 

Scratch (Figure 4b), one student discovered that the outcomes were expected to be symmetrical around the 

median when obtaining the four-dice sum. These examples suggest that concepts of experimental probability co-

emerged with the CT practice of simulation. 

 

Figure 4. Two students’ programming artifacts for the Dart Throwing (a) and the Dice Rolling (b) problems 

 
(a)                                                                             (b) 

 

 

4.2.2. Affordance from the design feature of the tasks 

 

The most significant affordance provided by the tasks in this domain is the opportunity for students to simulate a 

large number of random events, which would be nearly impossible to do when performed manually. The 

combination of experimental probability with the programming environment was an instrumental affordance 

allowing students to develop their probabilistic thinking alongside computational concepts and practices. For 

example, the students’ discourse about their expected dice rolling results reflected that they had made sense of 

what the frequency distribution would look like. With the ability to process a large number of trials by 

programming, the students tested their hypothesis, which filled the gap between experimental and theoretical 

probability—which is one of the main challenges for learning probability. The second stage of the Dice Rolling 

problem required students to generate the outcome space (e.g., 1-1-1-1-1-1, 1-1-1-1-1-2, … 6-6-6-6-6-6), as well 

as the frequency of the sums. We note that students who successfully programmed to find the outcome space 

inferred that the obtained sums would be symmetrical around the median sum (i.e., 21 in a six-dice situation) and 

that the median sum would appear with the greatest frequency. With the comparison of the counting results and 

the experimental simulation over a large number of trials, the students found the relationship between theoretical 

and experimental probability, which was co-developed with the CT concept and practice of loops and 

simulations. 

 

 

4.3. Number theory 

 

4.3.1. Co-development of CT and mathematics 

 

The mathematical concepts of divisibility, factors, and multiples were co-developed with the CT concept of 

conditions and Boolean logic. In the Prime Detector problem, the students used the code “mod” to determine 

whether a number was divisible by another number (i.e., A mod B results in the remainder of A divided by B). 

Starting from the definition of a prime as a whole number greater than 1 and divisible only by the number 1 and 

itself, a typical model in computational language was “check the mod of the target number (N) repeatedly from 2 

to N – 1; if all the mod results are non-zero, then the target number is a prime,” as illustrated in Figure 5a. The 

codes used by some students seemed to meet the logic of “checking all the divisors starting from 2 and then 

using the condition ‘if’ to determine whether all the remainders were greater than zero.” However, this was 

incorrect because the computer did not store the results within the loop. The condition “if” only checked the 

result of the last divisor. We observed that the students who experienced this unsuccessful attempt turned to the 

alternative model of “checking for a composite number” (Figure 5b). In other words, whenever the remainder 

yielded a result of zero, this indicated that the number had a factor other than 1 or itself and was therefore a 

composite number. Here, the students needed to combine Boolean logic, which returned a value of true or false 

and the conditional statement of “if … then …” to conclude that a number was a prime “if all remainders were 

non-zero.” 
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We note that the question of when to stop the loop came into play for some students, who questioned how they 

might optimize the condition in the program to make it “more efficient.” The students knew that based on the 

definition of a prime number, one could perform divisions from N/2 to N/(N – 1) to check for factors within the 

interval [2, N – 1]. However, some students found that if they changed the stopping condition to “repeat until the 

divisor > target number/2” (Figure 5b), the results would remain the same. We suggest that this particular 

meaning of primes was situated in the students’ CT practice in that the students were made aware of how to think 

like a computer as well as of ways to make the program more efficient (i.e., by taking half of the calculation 

time). 

 

Figure 5. Two students’ programming artifacts illustrating how to set the condition (a) incorrectly and (b) 

correctly 

 
(a)                                                                (b) 

 

 

4.3.2. Affordance from the design feature of the tasks 

 

The task provided an affordance supporting students in systematically testing and debugging their programs. For 

example, the student who programmed the codes in Figure 5a claimed that his program worked because he had 

tested the numbers 14, 16, and 110, and the program had returned the result of a composite number. Meanwhile, 

when he tested the numbers 5, 7, and 11, the program returned the result of a prime number. Consequently, he 

incorrectly claimed that the number 7,081 was a prime number because he had failed to test the program with an 

odd composite number, such as 15, which the program would incorrectly detect as a prime. This phenomenon 

raised the question of how to test the program effectively. Unlike the Two Savings problem, in which the 

students could compare their program output with their hand calculations to test whether the program had 

worked as desired, the prime detector problem was more sophisticated in that it prompted the students to decide 

what numbers to use to test their program. Without adequate consideration of the properties of primes and 

composites, their choice of testing numbers potentially limited their judgment of the correctness of the program. 

Therefore, the task was considered meaningful for developing the CT practice of testing and debugging in 

tandem with number properties. 

 

 

4.4. Geometry 

 

4.4.1. Co-development of CT and mathematics 

 

We observed the co-development of the students’ geometrical thinking along with the CT concept of sequence, 

as well as the use of parameters. The mechanism of drawing in the Scratch program requires making a path for 

the Pen tool to move along. In this case, the programming sequence becomes critical because it differs from 

spontaneous drawing with paper and pencil. For example, drawing a line and then coming back to the starting 

point could be easily done by hand, but it would require the sequence of “move X steps – turn 180 degrees – 

move X steps” in Scratch, and the direction of the Pen would remain reversed. In the problem of Drawing 

Polygons, students were first guided to draw a triangle. Initially, some students encountered difficulties due to 

confusing the Pen tool’s movement with the turning angle in Scratch. Using trial and error, they then 

successfully determined how to turn properly and went on to draw various (regular) polygons. In doing so, they 

also inferred that the sum of the exterior angle of any polygon would be 360 degrees (as reflected in the code 

“turn [360/number of sides] degrees” in Figure 6a) because the Pen tool would have rotated exactly one round 
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after drawing the polygon. The use of the parameter “number of sides” was especially pertinent in helping the 

students observe this relationship, which demonstrated that the students’ geometrical thinking was closely 

supported by the CT environment. 

 

The mathematical concept of the limit was co-developed with the CT concept of subroutines and the CT 

practices of reusing and remixing as the students continued to advance their usage of parameters. Unlike other 

tasks in the course in which the output was in numerical form rather than strictly visual, the students needed to 

think about the size and aesthetics of their drawings. As such, the students learned to use subroutines to duplicate 

drawings with varied sizes or customizable features using parameters. In drawing multiple polygons, such as the 

ones in Figure 6a, the students learned to create a function with two parameters (i.e., the number of sides and the 

lengths of sides). The “draw polygons” function now served as a subroutine that students could reuse repeatedly, 

which was a significantly different experience from drawing with paper and pencil. As one student commented 

regarding using subroutines: “The main code will be shorter and more efficient, and if you wanted to change 

some parts of the codes, you would only have to change it one time.” Meanwhile, in the process of drawing 

polygons with varying numbers of sides (Figure 6b), one student asked, “If I draw a 360-sided polygon, will I get 

a circle?” This comment was derived from his observation that a polygon with many sides resembles the shape 

of a circle, so he set 360 as the parameter for the number of sides, which is a relatively large number of sides, 

making each turn angle 1 degree (very small). Regardless of what he believed to be the limit value, his 

exploratory thinking could be considered a limiting process that supported the construction of the limit concept. 

Importantly, this was uniquely contextualized in the CT environment, particularly with subroutines and the 

practices of reusing and remixing. 

 

Figure 6. A sample program to draw multiple polygons with “functions” 

 
             (a)                                                                   (b) 

 

 

4.4.2. Affordance from the design feature of the tasks 

 

The design features of “multiple” and “regular differences” were the key affordances supporting students’ 

development of both geometrical concepts and the CT practice of reusing and remixing. For example, in this 

task, the students were encouraged to draw multiple polygons of different sizes and shapes, which would be 

difficult to perform with paper and pencil. To complete it efficiently, the task prompted students to observe and 

think about the similarities and differences among these polygons—that is, how the number of sides related to 

the exterior angles. In addition, during the process of exploring and drawing multiple polygons, the students 

came to appreciate the use of “functions” to demonstrate reusing and remixing.  Figure 7 illustrates one student’s 

work in drawing complex figures. After creating and using the “draw polygon” function as a basic element 

repeatedly, the student created a new function “T2” based on it, and then used “T2” to create another function 

“T3” (Figure 7a). The reusing and remixing of existing functions finally yielded a complex drawing (Figure 7b). 
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Figure 7. A sample program of drawing complex figures with “functions” 

 
(a)                                                                      (b) 

 

 

5. Discussion and conclusion 
 

Based on the four mathematical domains, we presented the findings for the teaching interventions in which the 

learning tasks were designed and articulated with mathematical problem-based learning in programming 

environments. The results suggest that these domains, as exemplified by the eight tasks used in the study, 

provided affordances for the co-development of computational and mathematical aspects of learning. In the 

following, we explicate some factors that are critical for future research and practice in K–12 mathematics and 

programming education. 

 

Apart from the intangible affordance provided by the selected content, the use of technology (i.e., Scratch) 

should be noted, especially in the context of integration with mathematical problems. First, we highlight the 

functions of “operators” built into the programming tools. The operators contain blocks that provide support for 

mathematical, logical, and string expressions, enabling the programmer to perform numerical and string 

manipulations. Some participants had experience using Scratch for programming; however, most only used 

functions focusing on interactive or narrative projects, such as animations and games (e.g., Kafai & Peppler, 

2011). With the codes in the operators, students were able to perform the necessary calculations in order to solve 

mathematical problems they had not encountered in formal classes. For instance, with the code “mod,” a concept 

that most students knew about but which was new to them in the programming context, students were able to 

explore advanced mathematical domains, such as number theory. Thus, this study demonstrated that applying 

mathematical knowledge to construct CT artifacts plays an important role in solving CT-based mathematical 

tasks (Bouck & Yadav, 2020; Grizioti & Kynigos, 2021; Miller, 2019). 

 

The second technological aspect we wish to spotlight is the “sensing” function. The capabilities of the sensors 

included detecting the position of the sprite and mouse and any key input, as well as providing the affordance of 

human–computer interaction (HCI) via the “ask and answer” code. As suggested by Kafai and Burke (2014), the 

programming environment should move “beyond the computer screen to meld the digital with the tangible” (p. 

91), thus providing additional sensory input and output. Although Scratch’s sensors and HCI functions are 

virtual, they allow learners to see the actual movement and outcomes of the program visually, similar to the 

physical world (Ching et al., 2018). Based on our observations, the students showed enthusiasm for making 

something that was “more like a real product” by using the sensing function, while many students attempted to 

change the sprite and background to customize the problem’s context. The students’ pursuit of making products 

is in line with how “learning as making” (Ng & Chan, 2019) pedagogy supports mathematics learning as hands-

on and goal-oriented. Making allows learners to actively construct knowledge instead of passively receiving 

information. 

 

Third, we would like to highlight the feature of the stage area in Scratch. Unlike other text-based programming 

tools with value or text outputs, many codes were specifically intended to produce visual output in the Scratch 

stage area. In the current study context, the stage allowed the students to visualize abstract mathematical 

problems as “authentic.” For instance, in the Two Savings problem, students could program the sprite to report 

their deposit and even change the images of the sprites to match the context of the problem; in the Dice Rolling 

problem, the students created sprites to determine the frequency of a target sum and various dynamic 

representations to visualize the frequency. Importantly, visualization became both the product and process of the 
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students’ creation, and this afforded opportunities for the students to engage in mathematical thinking because 

visualization is one of the vital processes in mathematics learning (Barmby et al., 2007). It is argued that the 

stage area in Scratch is able not only to prompt the co-development of mathematics and CT knowledge but also 

to improve the students’ ability to visualize in general. 

 

Regarding the selection of mathematical domains and tasks, we identified two types of interaction in the co-

development of mathematics and CT: (i) applying mathematical knowledge to construct CT artifacts and 

(ii) generating new mathematical knowledge along with CT practice (see also Ye et al., 2023). For the first type, 

students developed CT concepts, including variables, loops, iterations, and conditions, supported by existing 

mathematical knowledge. Previous research has suggested that the concept of looping in programming is 

difficult for students to master (Grover et al., 2015; Robins et al., 2003; Zur-Bargury et al., 2013). Also, students 

experience challenges in creating multiple variables and applying conditions (Cui & Ng, 2021). Given the 

mathematical context of the current study, the students were prompted to draft an algorithmic solution or create 

pseudocodes using their mathematical knowledge, which was considered helpful in overcoming difficulties in 

programming, thus supporting the development of CT concepts (Futschek, 2006; Grover et al., 2014). In 

addition, the mathematical ideas or relationships related to the problems were constructed based on the students’ 

reflections on the CT outputs. As suggested by Wilkerson-Jerde (2014), students “explore[d] important 

mathematical properties of [fractal] structures, and offered more ways to construct fractals with particular 

mathematical properties” (p. 118) by observing a collection of fractals produced by a computer. Pei and 

colleagues (2018) also found that students could reason and generalize regarding patterns from the data of a 

number of polygons. The current study provides empirical evidence that the students developed new 

mathematical ideas, such as experimental probability and limits, through CT practice and outputs. They also 

constructed mathematical ideas and relationships by working with and reflecting on the CT outputs they created 

with Scratch. 

 

The current study has both theoretical and practical implications for the integration of CT and mathematics. 

Theoretically, we clarified and highlighted the meaning of “affordance” in the instructional design. Moreover, 

we argue that the intangible affordance is even more important in technology-rich learning environments, given 

that the settings of these environments can vary for different programming languages and hardware. According 

to the results, the four mathematical domains provided unique opportunities for different CT concepts and 

practices (i.e., arithmetic – variables; random events – loops; number theory – testing and debugging; geometry – 

reusing and remixing). Meanwhile, within the given domains, the design features of the tasks played an 

important role. For example, the design of drawing multiple and different polygons in the domain of geometry 

prompted higher-order thinking in students regarding the mathematical concept of the limit. On the other hand, 

the constraints of programming-rich environments for mathematics learning should be acknowledged. In line 

with the findings of Cui and Ng (2021), the students encountered two types of constraints of affordance, namely 

mathematics-related constraints (e.g., the challenge of extracting the mathematical rules under the problem) and 

programming-related constraints (e.g., the challenge of using appropriate code to perform certain functions). We 

suggest that programming-related constraints could influence students’ learning outcomes in significant ways, 

and they should be minimized when teaching and learning mathematics in programming-rich environments. 

 

In terms of practical contributions, we suggest three areas in which computational problem solving may enrich 

mathematics learning, as informed by the findings. The first is that the problem should be stated such that the 

solution and/or the solution process are not immediately known. From this perspective, some of the mathematics-

related problems motivated students more than others when presented in the programming context. For example, 

when first presented, the solution process (e.g., strategies for counting to 21), the solution itself (e.g., a prime 

detector for large numbers), or both (e.g., experimental probability and fractal geometry) were not immediately 

obvious to the students. This element of the unknown provided opportunities for students to explore and inquire 

about new concepts, both in mathematics and programming. Second, computing with screen-based artifacts 

afforded dynamic visual representation and immediate feedback (such as the movement of the sprite, outputting 

a certain number, and a figure to be drawn), which significantly engaged the students who participated in this 

study. As such, the students were more likely to continue, regardless of the complexity and difficulty; thus, the 

visualization also prompted higher-order thinking toward the CT and mathematics concepts involved (Barmby et 

al., 2007). It is also worth noting that feedback enables students to manage their learning and mental processes 

through metacognition (Hesse et al., 2015). Conversely, a task requiring a long procedure with no outputs or 

feedback should be avoided because students might easily become stuck at some point, as was the case in the 

“fractal geometry” problem. Third, we consider room for autonomy to be an important characteristic to engage 

students by providing problems with choices and the customization of solutions. This might be explained by the 

fulfillment of autonomy, which is regarded as one of the key psychological requirements to support students’ 

motivation to engage in learning tasks (Hsu et al., 2019). 
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To conclude, this paper described and discussed affordances provided by activities for teaching and learning 

mathematics in computationally enhanced ways, drawing on selected mathematical domains and tasks. This 

initial research is highly promising, but more research is warranted to further investigate the design of learning 

materials for computationally enhanced mathematical teaching and learning. 
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Appendix 1. Brief description of the tasks included in the study 
 

Two Savings problem. There are two money-saving strategies. The first plan starts with $3 and then deposits 

$222 every day thereafter. The second plan starts with $3 and then deposits double the amount of the last deposit 

(i.e., $6, $12) on each subsequent weekend (i.e., Saturday and Sunday). The problem asks students to determine 

which saving strategy is more optimal given different saving periods. 

 

The mathematical concepts involved were arithmetic and geometric sequences. In solving the problem, the 

students were asked first to sketch a graph of the bank balance over time for each saving plan. Then, they were to 

model the respective saving processes with programming.  

 

Fibonacci Sequence Generator. Observe the following number sequence: 1, 1, 2, 3, 5, 8, 13, …, what is the next 

term? What is the 50th term? Create a program that could find any term in this sequence.  

 

The mathematical concept involved was sequences. The students were prompted to create a program that 

included input and output. The input indicates the number of items in the sequence, and the program outputs the 

value of the corresponding term. 

 

Dice Rolling problem. When we roll six dice together, we can obtain the sum of the results. If we have to guess 

the sum of the six dice given four choices, 19, 20, 21, or 22, which one should we choose? 

 

This was a two-part problem. The first part was programming a dice-rolling simulator with computer-generated 

random numbers and observing the sum upon a certain number of simulations. The second part was generating 

the outcome space (e.g., 1-1-1-1-1-1, 1-1-1-1-1-2, … 6-6-6-6-6-6), as well as the frequency of obtaining a given 

sum theoretically. For example, to obtain the sum of 6, the frequency was only one, that is, 1-1-1-1-1-1; but to 

obtain the sum of 7, the frequency was six (1-1-1-1-1-2, 1-1-1-1-2-1, …, 2-1-1-1-1-1). The mathematical concept 

involved in the task was classic probability. However, because the students had not yet learned the concept of 

probability, we avoided using the term and let the students experiment with the concept on their own. 
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Dart Throwing problem. There is a rectangular dartboard made of square regions of different sizes (i.e., side 

lengths of 1, 1, 2, 3, 5, and 8). When throwing darts at the board, the darts will either hit one of the square 

regions or miss the board completely. Design a fair game scoring system to indicate the number of points a 

player should gain when the darts land on the different squares. 

 

The mathematical concept involved was unequal likelihood outcome space. To solve the problem, the students 

would simulate throwing darts at this specific board a large number of times and record the frequencies of the 

darts hitting the various squares using programming.  

 

Prime Detector. Is 7081 a prime number? Create a device that could determine whether a number, such as 7081, 

is a prime or composite number.  

 

The mathematical concepts involved were divisibility rules, factors, and multiples. The students were introduced 

to the code “mod” to determine the remainder of a division operation. 

 

Counting to 21 (or 100). This is a game with two players. The players take turns calling either 1 or 2 (or 1 to 9 in 

the game of counting to 100), and the program will record and add all the numbers being called. For example, at 

the beginning, if Player A calls 2, the program will show 2; then, if Player B calls 1, the program will show 3, 

and so on. The player who gets the program to show 21 wins the game. The students were invited to, first, create 

the program and, then, play the game with their partners. Then, they would design a program with a 

computerized player in which the human player goes first such that the computerized player will always win. 

 

In this two-part task, the mathematics involved observing that a winning strategy was to ensure that, upon the 

human opponent taking the first turn to call a number, the computer will call a number such that the sum is a 

multiple of three.  

 

Drawing Polygons. Draw different regular polygons with the Pen function in Scratch. 

 

The mathematical concepts involved were exterior and interior angles and the number of sides. The students 

were first shown how to draw an equilateral triangle, and then, they were to explore drawing various (regular) 

polygons.  

 

Drawing Fractals. Observe the following geometric figures: a Sierpinski triangle, a fractal tree, and a Koch 

curve. What are some common features between them? Create a program to draw one of these fractal geometries 

and, then, design your own fractal geometry. 

 

The mathematical concept involved in this task was recursion. The students were not introduced to the 

mathematical definition of recursion (for example, using a typical factorial example, which can be represented by 

the recursive formula, ); rather, they were instructed to conceptualize a recursion as “a 

function calling the function itself” in programming. 
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