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ABSTRACT: This study developed a scale to assess high school students’ programming disposition. The scale 

was developed by utilizing a standardized test development process. The three constructs of the scale, namely 

confidence, persistence and flexible thinking, consisted of 9 items (3 items on each construct). Participants for 

the formal test of the scale were 1,332 students from 11 high schools. The validity and reliability of the 

programming disposition scale were validated via internal consistency, test-retest reliability, construct validity, 

discriminant validity, criterion-related validity, correlation coefficient of each subscale and confirmatory factor 

analysis. The analysis results showed that this scale is valid and reliable. The scale can serve as an assessment 

tool to assist teachers to instruct students learning programming, and help students determine whether taking 

programming courses in high school or pursuing programming-related majors in university. The effects of 

individual differences on programming disposition were also discussed to provide feasible educational 

implications. 
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1. Introduction 
 

A disposition is a tendency to display particular behaviors in a certain situation (Biber et al., 2013). Various 

patterns of thinking, such as confidence and attitude, enable one to be critical, thoughtful, and willing to work in 

a complex society (Wilkins, 2000). It includes not only students’ confidence, curiosity, values and attitudes but 

also flexible thinking and the development of strategies for problem solving (Whitin, 2007). Students’ 

inclinations and dispositions serve as predictors for their likelihood of taking related courses and pursuing 

various fields of study (Wilkins, 2000). The importance of student inclination and tendencies (disposition) has 

been previously addressed in the area of mathematics education. The National Council of Teachers of 

Mathematics (NCTM, 1989; NCTM, 2000) repeatedly stated the importance for teachers to improve and assess 

students’ mathematical disposition. A positive disposition towards mathematics is considered to be more 

important than mathematical knowledge (Kusmaryono et al., 2019; Wilkins, 2000).  

 

Programming is a subject related to mathematics and is considered as an integral component of K-12 curriculum 

as mathematics in many countries as it is a systematic way of approaching problem solving (Burrus & Moore, 

2016; Winslow, 1996). In fact, programming has become an essential subject in K-12 schools to cope with the 

need of learning computational thinking (Lye & Koh, 2014). However, high school students often feel frustrated 

in learning text-based programming and have lower learning motivation (Galgouranas & Xinogalos, 2018). This 

would also affect students’ academic intention for advanced study (Grandell et al., 2005). It might be beneficial 

if we can promote students’ programming disposition. However, there is still less relevant research. 

 

The development of assessment tools for disposition is still an open problem. To assess one’s mathematical 

disposition, several tools have been developed to identify students’ beliefs and attitudes (Royster et al., 1999), 

confidence (Wilkins, 2000), persistence (Breen et al., 2010), and flexible thinking (Whitin, 2007). Regarding 

programming, there is no assessment tool for disposition. In fact, it seems more challenging to develop a valid 

tool for assessing programming disposition because programming involves more various knowledge (e.g., 

programming syntax, constructs, and computer architecture) and skills (e.g., the use of IDEs, coding, and 

debugging). As Tsai et al. (2019) indicated, there is a lack of assessment tools for programming disposition in 

high school.  

 

To fill research gaps, this study aims to develop a standardized scale to assess high school students’ 

programming disposition. The disposition was assessed in terms of students’ confidence, persistence, and 

flexible thinking on learning programming. Accordingly, the following research questions were explored:  
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Q1. Is the proposed programming disposition scale a valid and reliable assessment tool? 

Q2. Does the second-order model of programming disposition show a good goodness of fit? 

 

 

2. Literature review 
 

2.1. Programming learning 
 

Learning programming skills is often seen as difficult (Fitzgerald et al., 2008; Rum & Ismail, 2017; Sáez-López 

et al., 2016). The difficulties often deal with the abstract nature of programming (Bennedsen & Caspersen, 

2006), intensive problem solving (Yurdugül & Aşkar, 2013), and using complex hierarchy of skills (Gray et al., 

1993). Many studies have discussed that reducing the learning difficulties may also be linked with various 

attitudinal issues rather than intrinsic complexity of programming, such as complexity of syntax and algorithms 

(Hu et al., 2020; Luxton-Reilly, 2016). The idea of supporting and developing positive attitude in students has 

received considerable attention in programming education. Hu et al. (2021) advocated that programming 

instruction should emphasize arousing students’ interests and improving attitudes rather than developing 

complex knowledge and skills only. Previous research has suggested that it is essential to develop K-12 students’ 

dispositions in a curriculum (Katz, 1993). Students with a positive disposition have a curiosity in learning, 

appreciate the usefulness of learning subjects, are more confident of problem solving, and consequently, they are 

more disposed to apply their ability (Kusmaryono et al., 2019). What is more, without proper instruction to 

arouse students’ disposition, students might have a negative disposition in learning. Students’ attitudes towards 

programming have been investigated from various perspectives, such as self-efficacy (Sun & Hsu, 2019; Tsai et 

al., 2019), confidence in programming skills (Eliasson et al., 2006), and persistence of long-term learning 

(Eliasson et al., 2006; Gomes et al., 2012). However, there are few studies targeted on investigating students’ 

programming dispositions. In addition, computer science educators are concerned about the lack of readily 

available, validated, or standardized assessment instruments in the field (Margulieux et al., 2019; Tew & Dorn, 

2013). A rigorous process to develop the instruments is needed. 

 

Besides programming disposition, there are still other factors that affect students’ learning of programming, such 

as gender (Baser, 2013; Kong et al., 2018; Master et al., 2016), mathematical skills and abilities (Burrus & 

Moore, 2016; Erümit, 2020), science learning (Durak & Saritepeci, 2018), and parental support (Mason & Rich, 

2020; Master et al., 2017). These factors might also affect students’ programming disposition. 

 

 

2.2. Construct of programming disposition 
 

Student’s programming abilities are correlated with their mathematical skills (Byrne & Lyons, 2001). The 

training of logical and abstract thinking, and reasoning in mathematics are relevant to working with abstract 

concepts and symbol manipulation in programming (Pioro, 2006). Students’ mathematical dispositions served as 

a major foundation and springboard in our developing the construct of programming disposition. The NCTM 

(2000, see Table 1) has described students’ dispositions as being relevant to their efforts in solving difficult 

problems and observing complex patterns, regularities, and correlations; these dispositions include confidence, 

perseverance, flexible thinking, and curiosity (NCTM, 2000; Whitin, 2007). Programming has been found as an 

effective tool for practicing computational thinking (Grover & Pea, 2013). The disposition towards 

computational thinking proposed by International Society for Technology in Education and the Computer 

Science Teachers Association (ISTE & CSTA, 2011, see Table 1) is also included as an important reference. The 

reference of NCTM and ISTE/CSTA constructs, along with literature in learning programming, allowed the 

construction of programming disposition scale to focus upon confidence, perseverance, and flexible thinking. 

The arguments are provided below. 

 

Table 1. Constructs of mathematics/computational-thinking disposition 

Mathematics disposition NCTM (2000) Computational thinking disposition ISTE/CSTA (2011) 

Confidence Confidence in dealing with complexity 

Perseverance Persistence in working with difficult problems 

Flexible thinking 

Curiosity 

Tolerance for ambiguity 

Ability to deal with open-ended problems 

Ability to communicate and work with others to achieve the goal 

 

Students’ confidence and persistence (or perseverance) are both identified by NCTM and ISTE/CSTA as being 

important factors. Individual’s confidence in dealing with complex problems is an important personal trait for 
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learning computer programming. Golding’s et al. (2006) study has found that confidence was the most 

significant factor affecting one’s performance in learning programming. There was a significantly positive 

correlation between students’ confidence and their achievements in learning programming (Anastasiadou & 

Karakos, 2011; Baser, 2013). A student’s level of confidence was found to be a major factor involved with the 

mastery of programming and especially for novices when trying to solve a complex problem (Eliasson et al., 

2006).  

 

Persistence, in terms of educational research, has been explained by many as a kind of continuously learning-- 

one’s tendency to pursue academic objectives (Pérez, 2018). In programming, persistence refers to continuing 

engagement when performing a challenging task. Persistency is needed to become a good programmer (Cheah, 

2020; Jiau et al., 2009). Charlton and Birkett (1999) revealed that persistence is a predictor of programming 

achievement. Gomes et al. (2012) found persistence as being the most important reason students increase their 

performance in a programming course. Katz et al. (2006) also have found that students’ persistence in 

programming correlated strongly with their grades. Perseverance (delineated by NCTM) has a very similar 

meaning with persistence applies to success in tackling difficult problems.  

 

Flexible thinking has been characterized as the ability to restructure and transfer one’s knowledge; that is, it 

enables people to understand, negotiate, and balance diverse views and beliefs-- those used to reach workable 

solutions (Barak & Levenberg, 2016). The process of learning programming does, indeed, involve such flexible 

thinking (Jang & Lew, 2014). One’s personal flexibility is also an important characteristic in programming, such 

as approaching problems in multiple ways, being open to new ideas, and being open-minded (Begel & 

Nagappan, 2008). Concepts of flexible thinking include the disposition towards the following: “reflectivity, 

willingness to consider evidence contradictory to beliefs, willingness to consider alternative opinions and 

explanations, and a tolerance for ambiguity.” This is also combined with a willingness to postpone closure 

(Stanovich & West, 1997). In this regard, the ‘tolerance for ambiguity’ is addressed in ISTE/CSTA and is a 

critical component of flexible thinking. The ‘curiosity’ delineated by NCTM is also a factor involved with 

flexible thinking. Students’ exploratory attitudes and interests often manifest themselves with increased 

confidence while displaying flexibility and adaptability (Stokoe, 2012). These are aligned to concepts involved 

with flexible thinking. 

 

The constructs relevant to ‘ability’ proposed by ISTE/CSTA were, additionally, removed because we focused on 

exploring students’ programming dispositions (habits of mind) rather than their abilities (capabilities of doing 

something with knowledge and skills). Consequently, the scale utilized here consisted of three major constructs: 

confidence, persistence, and flexible thinking. 

 

 

3. Method 
 

We applied the standardized test development process to the development of the programming disposition scale 

used in this study. This development process involved two phases: (1) a pilot study and (2) a formal test. The 

pilot study was used to generate and analyze items. The formal test was used to examine the reliability and 

validity of the scale. 

 

 

3.1. Participants  

 

In the pilot study, convenience sampling was used to select 246 students (who did not participate in the formal 

test) from grades 10 to 12 who had learning experiences in programming from four Taipei high schools. In the 

formal study, the sample consisted of 117 (48%) tenth-grade, 76 (31%) eleventh-grade and 53 (22%) twelfth-

grade students. 

 

Table 2. The distribution of samples by school, grade, and academic track 

Academic track 10th grades 11th grades 12th grades Total 

- Science Social science Science Social science 
 

Schools       

Tier 1 345 101 83 118 137 784 

Tier 2 241 91 36 127 53 548 

Total 586 192 119 245 190 1,332 

311 435  
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Participants for the formal test of this study consisted of 1,332 students from 11 high schools in the Taipei 

metropolitan area in Taiwan. Stratified sampling was applied when recruiting the students. First, high schools 

were divided into two groups, Tier 1 and Tier 2, according to their traditional academic performance. Five to six 

schools were selected from each school group. Second, each school recruited one or two classes of students from 

each of the 10th to 12th grades. Finally, for 11th and 12th grades, both science and social science track students 

were recruited. High school students in Taiwan were divided into the two academic tracks after the 10th grade 

for their subject study. The distribution of samples by schools, grade, and academic track is shown in Table 2. 

All participants have programming experience because programming is covered in the 10th grade curriculum. 

 

 

3.2. Procedure  

 

The programming disposition scale was conducted on students in the formal test either by paper-and-pencil (two 

schools) or online (nine schools). The time for students to take the test was approximately 15 to 20 minutes. 

 

 

3.3. Instruments 

 

The programming disposition scale used here was developed based upon ones proposed by NCTM and 

ISTE/CSTA. The unique characteristics utilized in programming were considered when generating the constructs 

as discussed in section 2.2. 

 

In the pilot study, draft items were adapted from various studies, such as “confidence” from the Fennema-

Sherman Mathematics Attitudes Scales (Fennema & Sherman, 1976), “persistence” from (Breen et al., 2010), 

and “flexible thinking” from (Stanovich & West, 1997). Some items specifically related to programming aspects 

were added by the expert panel. A panel of seven experts included five computer science educators and two 

psychological and educational test professionals. They discussed and finalized 19 draft items (see Table 4) for 

further item analysis in the pilot study. Finally, a total of nine items were selected for the final scale used in the 

formal test. Three items were selected for each subscale (see Table 3). Item 6 is a negatively worded question 

which was reversed scored. The items developed here were selected based upon existing research, in which the 

scales used were mainly 5-point scales. Research by Croasmun and Ostrom (2011) has shown that a scale is both 

reliable and stable for both 4‐point Likert and 5-point Likert scales. A 5-point Likert scale ranging from 

1(strongly disagree) to 5 (strongly agree) was, thus, used in this study. 

 

Table 3. Items of programming disposition scale 

Constructs Definition Items 

Confidence Degree of having trust in 

programming   

C1 I can get good grades in programming. 

 C2 I can solve difficult programming tasks. 

 C3 I believe I can learn programming.  

Persistence Continuing engagement 

in programming when 

facing a challenging task 

or spending a longtime 

to solve the task   

P1 When presented with a difficult programming task, I increase my 

efforts. 

 P2 I continue to work on a programming task even I have spent a long 

time to solve it and was not successful. 

 P3 After learning programming for a while, I tend to give up. 

Flexible 

thinking 

Attempting to think 

differently or  

considering alternative 

solutions 

FT1 I would try alternative solutions when solving problems similar to 

a previous one. 

 FT2 I understand some programming tasks just cannot be solved in a 

short time.   

 FT3 I consider alternative solutions when solving programming tasks.  

 

Two instruments were used in this study to ensure the validity of the programming disposition scale. The Bebras 

Challenge (see https://www.bebras.org/) had over 2,872,000 students in 43 countries participated in 2019. The 

main goal of it is “to motivate pupils to be interested in informatics topics and to promote thinking which is 

algorithmic, logical, operational, and based on informatics fundamentals” (Dagienė & Stupuriene, 2016). The 

Bebras Challenge score was used to evaluate the correlation to the programming disposition scale in this study. 

The Comprehensive Assessment Program [CAP] for junior high school students is an examination for all 9th 

students in Taiwan. The examination scores play an important part for admitting students into secondary schools. 

CAP consists of Chinese, English, mathematics, natural science and social studies. This study used the CAP 

scores of mathematics and Chinese to assess the discriminant validity of programming disposition scale. 
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Additionally, three pieces of background information were collected from students, including gender (male, 

female), academic track (science, social science), and attitudes towards the degree of parental support (5-point 

Likert scale ranging from 1 to 5). This information was used to examine the construct validity of the 

programming disposition scale. 

 

 

3.4. Data analysis 

 

In the data analysis procedure, we analyzed data with SPSS 23.0 for Windows and LISREL 8.7 for Windows. 

Descriptive statistics were firstly performed to calculate the means, standard deviations and percentiles of 

student’s programming disposition scores. Then, to test our research questions, the validity and reliability of this 

scale were evaluated using t tests and person correlation analysis to establish the internal consistency, test-retest 

reliability, criterion validity, discriminant validity and construct validity. A confirmatory factor analysis [CFA] 

was performed to identify the factor structure and items of the programming disposition scale. Independent t tests 

were used to examine the difference in gender and academic track. Pearson correlation analysis was conducted to 

test the correlations between parental support and programming disposition. 

 

 

4. Results and discussion 
 

4.1. Pilot study: Item analysis 

 

The standards of evaluating included an improvement of internal consistency, item discrimination, factor 

loading, item-total correlation and individual item reliability. CFA results showed χ2 = 769.18 (df = 149), p < 

.001 and analysis of 19 items showed in Table 4.   

 

Table 4. CFA results of 19 items  

Construct Item Alpha 

if item 

deleted 

Factor 

loading 

Item-total 

correlation 

Individual 

item 

reliability 

t 

Confidence 1. I feel confident in programming. .93  .85  .80** .72 16.46*** 
 2. I can get good grades in programming.a .93  .79 .75** .62 14.13*** 
 3. I believe I can learn programming.a .93  .82  .81** .67 15.12*** 
 4. I can solve difficult programming 

tasks.a 

.93  .85 .82** .72 16.33*** 

 5. I cannot be good in programming.b .93  .63 .62** .40 11.43*** 

 6. Programming is my worst learning 

activity.b 

.93  .53 .55** .28 9.62*** 

Persistence 7. When presented with a difficult 

programming task, I increase my 

efforts.a 

.93  .84 .83** .71 16.34*** 

 8. I tend to give up after spending much 

time on a programming task.b 

.94  .32 .38** .10 5.18*** 

 9. I continue to work on a programming 

task even I have spent a long time to 

solve it and was not successful.a 

.93  .85 .84** .73 15.71*** 

 10. I commit to spend a longtime to learn 

programming. 

.93  .82 .81** .67 17.03*** 

 11. I believe learning programming 

requires a longtime effort. 

.93  .46 .50** .21 7.12*** 

 12. After learning programming for a 

while, I tend to give up.a b 

.93  .47 .54** .22 9.29*** 

Flexible 

thinking 

13. I would try alternative solutions when I 

encountered difficulty in solving a 

programming task. 

.93  .87 .83** .76 17.37*** 

 14. I always formulate solutions clearly 

before jumping into coding. 

.93  .61 .63** .37 9.47*** 

 15. I would try alternative solutions when 

solving problems similar to a previous 

one.a 

.93  .84 .77** .70 14.35*** 
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 16. I understand some programming tasks 

just cannot be solved in a short time.a 

.93  .60 .60** .36 9.48*** 

 17. I consider alternative solutions when 

solving programming tasks.a 

.93  .84 .78** .71 14.32*** 

 18. I try to find out other solutions if I 

cannot solve a programming task. 

.93  .82 .77** .67 13.60*** 

 19. I understand that not all problems can 

be solved by programming. 

.94  .14 .13* .02 1.78 

Note. *p < .05. **p < 0.01. ***p < 0.001.a The item was included in the final programming disposition scale. b The 

item was a negative item.  

 

First, according to the values of alpha if item deleted, each item was reliable (whole scale α = .93). The t-tests 

results of high and low scoring groups showed items had high discrimination (excluding item 19). The factors 

loaded between .14 and .87. Item 8 and 19 factor loading < .45. Further, the individual item reliability was 

between 0.02 and 0.76. 8 items (item 5, 6, 8, 11, 12, 14, 16 and 19) were considered to be deleted (individual 

item reliability < 0.5). The results of Pearson correlation showed that a significant correlation between each item 

and whole scale.  

 

According to the results, item 1, 2, 3, 4, 7, 9, 15, 17 were included. In this scale, persistence means continuing 

engagement in programming when facing a challenging task or learning for a while. Compare to the other items, 

item 12 clearly states “after learning programming for a while,” which could reflect the point in the persistence 

concept, “continuously for a while.” As a result, we selected item 12 in the item pool. The concepts of flexible 

thinking include attempting to think carefully, considering alternative solutions and having a tolerance for 

ambiguity. The statement in item 16, “some programming tasks could not be solved soon” means that subjects 

needed to think more carefully or consider other possibilities, which was a kind of ambiguity. So item 16 was 

included. Finally, there were three items for each subscale. In the confidence subscale, item 1 to 4 were 

suggested to be included. However, concepts contained in item 2 to 4 already were enough to reflect item 1, in 

addition, to ensure the consistency in three subscales, we deleted item 1. Finally, the programming disposition 

scale was composed of 9 items. 

 

According to the results of item analysis, the values of the goodness of fit were examined. The results found that 

χ2 = 60.25 (df = 24), p < .001, GFI = .95, AGFI = .90, RMR = .04, RMSEA = .07, NFI = .98, RFI = .96, CFI = 

.98, PGFI = .52, PNFI = .65, CN = 160.59. The results showed that the values of the goodness of fit are good. 

 

 

4.2. Reliability and validity (Q1) 

 

Table 5 shows the descriptive statistics of student’s programming disposition in the formal test. The mean score 

for all participants was 28.45, averaged 3.22 for each item. Overall, students’ programming disposition was 

found to be “medium” to “high.” Students displayed the highest scores in flexible thinking (M = 10.08). 

Intermediate was that of persistence (M = 9.37), while confidence (M = 8.97) was shown to be the lowest. Our 

result with regard to “confidence” was similar to the TIMSS (Trends in International Science and Mathematics, 

2020) study which showed that Taiwanese students lacked confidence in science and mathematics, although their 

performance has been shown to be higher than most of the countries (TIMSS, 2020). 

 

Table 5. Descriptive statistics of student’s programming disposition (N = 1,332) 
 Total Confidence Persistence Flexible thinking 

M 28.42 8.97 9.37 10.08 

SD 6.57 2.49 2.43 2.34 

Min 9.00 3.00 3.00 3.00 

Max 45.00 15.00 15.00 15.00 

Percentiles 10 20.00 6.00 6.00 7.00 

20 23.00 7.00 7.60 8.00 

30 25.00 8.00 8.00 9.00 

40 28.00 9.00 9.00 10.00 

50 29.00 9.00 10.00 10.00 

60 30.00 10.00 10.00 11.00 

70 32.00 10.00 11.00 12.00 

80 34.00 11.00 11.00 12.00 

90 36.00 12.00 12.00 13.00 
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Cronbach’s coefficient alpha (α) was used to test the internal consistency of the scale. The Cronbach’s α of the 

entire scale was found to be .91. The subscales for confidence, persistence and flexible thinking were found to be 

.83, .78, and .78 respectively. The correlation coefficient for test–retest reliability was found to be .89 for the 

scale, and .86, .77, and .77 for the subscales of confidence, persistence, and flexible thinking, respectively. The 

correlations between each subscale are given in Table 6. The correlation coefficients are between .70 and .74. 

There is a positive correlation between each subscale. These results showed that this scale is reliable. 

 

Table 6. Correlation coefficient of subscale  

Subscale n M SD 1 2 3 

1. Confidence 1,332 8.97 2.49 1 
  

2. Persistence 1,332 9.37 2.43 .74** 1 
 

3. Flexible Thinking 1,332 10.08 2.34 .70** .74** 1 

Note. **p < .01. 

 

Bebras Challenge scores from 30 students were used to evaluate the criterion-related validity of the scale. The 

Bebras Challenge test, based on informatics fundamentals, is a context for understanding students’ computational 

thinking. To solve Bebras Challenge tasks, students need to demonstrate their ability to understand informatics 

fundamentals. They accomplish this by using information computation, data processing, data visualization, 

algorithm and programming concepts (Dagienė & Futschek, 2008). Our analysis showed a positive correlation 

between students’ Bebras Challenge performance and their programming disposition scale (r = .48; p < .01). 

This result was in agreement with findings by Araujo et al. (2017) and arguing that the Bebras Challenge 

performance test was a good measure of students’ aptitudes in computer science (Combéfis & Stupurienė, 2020). 

Therefore, programming dispositions correlates with computer science learning.  

 

The construct validity of the scale shows that students’ programming dispositions were accurately reflected and 

consistent with previous research findings and is consistent with respect to gender differences, academic track, 

and parental support (as cited in the previous sections). Gender differences with respect to programming 

dispositions are described as follows. Table 7 shows that male students (M = 30.19, SD = 6.34) had a higher 

programming disposition (t = 8.32; p < .001) than female students (M = 27.22, SD = 6.45). The result is 

consistent with the findings of previous studies which show that male students display more positive attitudes 

towards programming (Kong et al., 2018; Master et al., 2016). Male students, additionally, also displayed higher 

confidence, persistence and flexible thinking than did their female counterparts. This is consistent with previous 

research in computer science with respect to gender differences. Male students also had higher levels of 

confidence when encountering more difficult programming problems than female students (Settle et al., 2015). 

Katz et al. (2006) also showed that male students had a higher persistence in executing programming tasks than 

females. It is, consequently, important that these gender differences can be identified so that additional strategies 

can be developed to improve students’ programming disposition: addressing the needs of both male and female 

students. 

 

Table 7. Gender and programming disposition 

Construct Male Female t(744) p Cohen’s d 
 M SD M SD    

Programming disposition 30.19 6.34 27.22 6.45 8.32 .000 0.33  

Confidence 9.66 2.47 8.51 2.4 8.49 .000 0.33  

Persistence 9.93 2.39 8.99 2.39 7.04 .000 0.28  

Flexible thinking 10.61 2.21 9.72 2.35 6.91 .000 0.28  

 

Another important variable to consider when examining the validity of this scale is that academic track of the 

individual student. Table 8 shows that students enrolled in a science track (M = 30.26, SD = 6.42) had a 

significantly higher programming disposition score (t = 9.55; p < .001) than students in a social science track (M 

= 25.63, SD = 6.69). In Taiwan, high school students in grades 11 and 12 are divided into two academic tracks: 

science and social science. High school students in the science track often enroll in additional science and 

advanced math courses in grades 11 and 12. Students in the social science track, however, tend to enroll in more 

social studies, humanity, and intermediate math courses rather than additional science and math courses. In this 

study, we found students with science background had more positive programming dispositions in all three 

constructs: confidence, persistence, and flexible thinking. The findings support the idea that the learning of 

programming is strongly linked with mathematical skills and abilities (Burrus & Moore, 2016) and science 

subjects (Durak & Saritepeci, 2018). 
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With regard to the role of parental support, our findings (r = .35, p < .01) are consistent with previous studies 

that showed a positive correlation between the degree of parental support and programming dispositions. 

Previous studies have shown that the more the parents valued programming activities, the more positive were the 

students’ attitudes (Mason & Rich, 2020; Master et al., 2017). In this study, we investigated the link between 

parental support and students’ programming dispositions. Our findings reveal that parental support shows a very 

definite positive correlation with programming dispositions. These findings are consistent with the results in the 

2018 Programme for International Student Achievement and the 2019 findings of the Organization for Economic 

Cooperation and Development (OECD, 2019). The more support students got from parents, the higher the 

dispositions. 

 

Table 8. Academic track and programming disposition 

Construct Science Social science t(1330) p Cohen’s d 
 M SD M SD    

Programming disposition 30.26 6.42 25.63 6.69 9.55 .000 .50  

Confidence 9.59 2.50 8.06 2.47 8.31 .000 .44  

Persistence 10.00 2.38 8.28 2.54 9.40 .000 .49  

Flexible thinking 10.68 2.23 9.28 2.45 8.05 .000 .42  

 

Table 9 shows that students’ programming dispositions were positively correlated with CAP mathematics scores. 

The CAP Chinese scores were, however, shown to be consistently negative. This shows that the programming 

disposition scale has a high discriminant validity. Erümit (2020) has indicated that mathematical activities had a 

positive effect on thinking flexibly for solving programming problems and persistence of programming learning. 

Katz et al. (2006) also found that learning experience of relevant subjects affected students’ persistence of 

programming learning. In fact, the fields of programming and mathematics involve similar cognitive processes, 

such as logical thinking, computing, reasoning and problem solving. Therefore, mathematical ability and 

learning experiences are correlated with students’ confidence in learning programming, persistence in facing 

complex tasks and thinking flexibly. 

 

Table 9. Discriminant validity (N = 1,332) 
 Programming disposition Confidence Persistence Flexible thinking 

Mathematics .12** .11** .11** .12** 

Chinese -.12** -.13** -.11** -.08* 

Note. **p < .01 

 

 

4.3. Confirmatory factor analysis (Q2) 

 

CFA was used to examine the values of the goodness of fit. The results found χ2 = 201.04 (df = 24), p < .001 

(Figure 1). The results of the CFA did not show a good statistical fit probably due to our large sample size (over 

200). For this reason, other statistical analyses needed to be used (Rigdon, 1995). The measurement for the 

goodness of fit here is composed of absolute fit indexes, relative fit indexes, and parsimonious fit indexes 

(Bagozzi & Yi, 1988). The analysis of this scale is: Absolute fit index: GFI = .97, AGFI = .94, RMR = .03, 

RMSEA = .07; relative fit index: NFI = .99, RFI = .98, CFI = .90; parsimonious fit indexes: PGFI = .52, PNFI = 

.66, CN = 312.84. This model passed all 10 standards (Table 10). In addition, the factor loading of all items were 

higher than the acceptable level (ranged from 0.57 to 0.86) (Figure 1). Item C2 (I can solve difficult 

programming tasks), P1 (When presented with a difficult programming task, I increase my efforts), FT1 (7. I 

would try alternative solutions when solving problems similar to the previous one) had the highest factor load in 

confidence, persistence and flexible thinking respectively. Table 11 shows the composite reliability [CR] > .7, 

average variance extracted [AVE] > 0.5. These results revealed this model was confirmed and produces high 

reliability and validity. The CFA supported that the construct of programming disposition is composed of 

confidence, persistence, and flexible thinking. “Confidence” among three constructs has the highest CR and 

AVE.   
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Figure 1. CFA diagram of the scale 

 
 

Table 10. Values of goodness of fit index 

Goodness of fit index Second-order factor analysis Fit criteria of goodness of fit 

Absolute fit index   

χ2 201.04 - 

Df 24 - 

GFI 0.97 > 0.9, good fit value 

AGFI 0.94 > 0.9, good fit value 

RMR 0.03 < 0.05, good fit value 

RMSEA 0.07 < 0.08, reasonable fit value 

Relative fit index   

NFI 0.99 > 0.9, good fit value 

RFI 0.98 > 0.9, good fit value 

CFI 0.99 > 0.9, good fit value 

Parsimonious fit indexes   

PGFI 0.52 > 0.5 

PNFI 0.66 > 0.5 

CN 312.84 > 200 good sample quantity 

 

Table 11. CR and AVE of three construct 

Construct CR AVE 

Confidence 0.83 0.62 

Persistence 0.79 0.57 

Flexible thinking 0.79 0.57 

 

 

5. Significance of the programming disposition scale in educational settings 
 

The significance of programming instruction has been addressed in literature (Burrus & Moore, 2016; Winslow, 

1996). Previous findings have indicated that many students struggle with computer programming, which affects 

their engagement and motivation (Chookaew et al., 2015; Eliasson et al., 2006). Programming has a different 

nature from other disciplines because it involves both syntactic details and complex problem solving processes, 
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which requires intensive flexible thinking and persistence. Programming dispositions not only describes how 

much students are confident in programming, but also how they confront complicated problems. It also 

prescribes students’ temperament of their roles when engaged in task performance (Association for Computing 

Machinery & IEEE Computer Machinery, 2020). Although previous research has devoted to studying effective 

instructional strategies for programming, it still lacks deeper exploration about students’ disposition. Our 

research contributes to reveal more about students’ behaviors and attitudes that characterize the inclination to 

carry out programming tasks.  

 

The proposed programming disposition scale is an instrument for exploring how students communicate with 

programming tasks and their willingness to reflect on their own thinking and problem solving during 

programming. In educational settings, the programming disposition scale could be an effective tool for teachers 

to understand students’ learning and evaluate the effects of instruction. Since the disposition scale moderates the 

behavior of applying knowledge and skills that becomes the context where and why the knowledge and skills are 

applied (Kusmaryono et al., 2019). This can, thus, be used as a guide for teachers to develop adaptive instruction 

to inspire and motivate their students for future studies or careers. A more inclusive learning environment can 

also be developed for students with different genders or from different cultures. In addition, teachers can 

evaluate whether their instructional strategies would inspire students’ programming disposition, e.g., they can 

improve the implementation of STEM (Science, Technology, Engineering, Mathematics) education by 

considering programming disposition to arouse students’ awareness of the integration of computational thinking 

and STEM disciplines. 

 

 

6. Educational implications and suggestions 
 

On the basis of research results, we produced some recommendations as follows. 

 

Adaptive instruction: Among the three constructs, students’ confidence was the lowest. This finding was similar 

to Mathematics. TIMSS (2020) released “TIMSS 2019 International Results in Mathematics and Science.” The 

report showed that students in Taiwan often lack confidence in Mathematics and Science. Prior studies have 

proved that improper instructional design might lead to negative disposition (Katz, 1993). Therefore, instead of 

lecture-based instruction, more adaptive instruction should be provided based on students’ characteristics. 

Exploration and experiment activities are effective for enhancing K-12 students’ persistence and confidence. 

Through the process of struggling with complex problems, students’ problem solving abilities can also be 

improved. Regarding gender issues, more adaptive learning activities should be designed to target to arouse 

females’ interests and dispositions in programming. For example, Dagienė et al. (2015) found that through the 

task of dance moves, female students could understand better about the instructions or algorithm steps. Proper 

programming tools, such as visual programming, is also effective for engaging more females in programming 

(Baytak & Land, 2011; Kelleher & Pausch, 2006).  

 

STEM instruction: The analysis of academic track showed the learning experience and ability of science and 

mathematics had a correlation with programming disposition. The knowledge and skills of science and 

mathematics should be integrated with programming practices. Lin et al. (2021) suggested that STEM education 

from multidisciplinary, such as programming and science, would increase students’ interests. Erümit’s (2020) 

study also pointed integrating mathematical activities into programming learning practices had a positive effect 

on thinking flexibly for solving programming problems and persistence of programming learning. Lin et al. 

(2019) found that through the STEM instruction, students had a higher confidence on programming learning. The 

results reveal “STEM” is an effective instructional strategy.  

 

Jigsaw cooperative learning: Jigsaw cooperation is also an effective strategy for programming instruction. 

Teachers systemically divide learning tasks into different sub-tasks and assign students into groups, and each of 

the groups should complete one of the sub-tasks. Existing research has proved the effectiveness of Jigsaw 

strategies on students’ knowledge building and confidence in programming (Garcia, 2021). 

 

Parental support: Parental support has also been shown to be a vital factor in helping develop a student’s 

programming disposition. It is imperative that schools help parents in understanding the importance of learning 

programming, a vital need for students’ career development. Parents would not learn programming knowledge 

and skills but need to understand impacts of computing on daily life. The K-12 computer science framework 

listed three dimensions of impacts of computing: culture, social interaction and safety, law, and ethics. Thus, 

schools should conduct activities for parents to demonstrate the effects of computing, such as new cultural 

practices, equity and access to computing (K-12 Computer Science Framework Steering Committee, 2016). 
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7. Conclusion 

 

This study develops a programming disposition scale for high school students. The scale is a five-point Likert-

type scale and consists of 9 items. The internal consistency of the scale is excellent and the test-retest reliability 

is high. This scale appears to be respectably stable over time. The correlation coefficient of each subscale is 

positive. For the criterion validity, the scale shows a positive correlation with the Bebras Challenge. This scale 

also establishes the discriminant validity relevant to students’ performance on mathematics and Chinese. The 

construct validity is validated by testing the variables of gender, academic track, and support from parents. The 

scale model has been verified by the CFA results. The structural equation modelling supports that the construct 

of programming disposition is composed of confidence, persistence, and flexible thinking. The results of these 

statistical analysis show that the scale is a valid and reliable tool. This study helps to expand our knowledge with 

respect to programming disposition, and improves the quality of assessment in programming education. 

 

Our programming disposition scale has some strengths, such as filling an important gap in the field of 

assessment development for computer science education; teachers can utilize this scale to assess students’ 

programming dispositions and find ways to help students learn in a programming course; students may, 

additionally, refer to the results on this scale and glean insights as to whether they should enroll in programming 

courses in high school or whether to choose related majors in a university setting; while this scale is primarily 

developed for students having experience in programming, it may also be useful for students who have little or 

no programming experience. However, a selection bias in participant recruitment might pose a threat to the 

internal validity of the research. All participants are in the Taipei metropolitan area in Taiwan. More subjects 

must be included in the future to get more generalized results for extending to other populations. 
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