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ABSTRACT: Intelligent learning technologies are often applied within the educational industries. While these 

technologies can be used to create learning experiences tailored to an individual student, they cannot address 

students’ affect accurately and quickly during the learning process. This paper focuses on two core research 

questions. How do students regulate affect and what are the processes that affect regulation? First, this paper 

reviews the affect regulation methods and processes in an intelligent learning environment based on affective 

transition and affect compensation. This process, along with affect analysis, affect regulation, intelligent agents, 

and an intervention strategy can be used to analyze specific affect regulation methods and improve the affective 

regulation system. Seventy-two 7th grade students were randomly placed into an experimental condition that used 

Betty’s Brain, an intelligent tutoring system (ITS), or a classroom control. A lag sequence analysis and a 

multinomial processing tree analysis of video data captured at 25-minute intervals revealed significant 

differences in affect transitions frequencies between the two groups. Based on the results of the above analyses 

and after-class interviews, we found that Betty’s Brain was able to promote effective affect-regulation strategies 

to students in the domain of forest ecosystems. 

 

Keywords: Teachable agent, Affect, Regulation, Tutoring, Betty’s Brain 

 

 

1. Introduction 
 

Learning technologies have been widely used in education, which gradually changed the demand for talent and 

new educational formats (Liu & Lemeire, 2017). On one hand, these technologies benefit education (Popenici & 

Kerr, 2017). For example, online learning platforms make it possible for students to learn anytime and anywhere 

(Du et al., 2019). Recommendation algorithms in ITSs can be used to select adaptive content that fits a student’s 

aptitude, characteristics, and learning progress (Wang et al., 2019). However, learning technologies are not 

without their disadvantages. For example, students may easily find themselves physically isolated in online 

learning environments, and they may feel helpless when they encounter difficulties (Raufelder et al., 2018). The 

status quo of learning technologies is that they make learning content easily accessible but they generally do not 

improve students’ affective well-being. Students often suffer from inattention and lose navigation due to non-

adaptive media materials, redundant content, and difficult tasks (Burek, 2017; Lim, 2004). Consequently, many 

students may disengage from the learning content and have unsatisfactory learning gains. Over time, they may 

feel fatigue and experience negative affect (Fida et al., 2015; Arsenio & Loria, 2014). Therefore, it is important 

to investigate the role of affect in technology-based learning environments, like ITSs, and the potential solutions 

for reducing negative affect and their detriments to learning. 

 

Schutz et al. (2007) pointed out that affect influences students’ motivation for learning. Research has shown that 

students who engage in exciting learning activities experience positive affect and have high learning gains 

(Gross, 1998). Lu (2012) found that learning activities that make students feel happy are important in teaching. 

Alkhalaf (2018) found that negative affect might lead to poor academic performance. Academic performance can 

be improved by increasing positive affect and through continuously combating or managing anxiety during 

learning. By examining students’ degree of concentration, patience and learning willingness, Hwang et al. (2020) 

found that students using an adaptive learning system with affective and cognitive performance analysis 

mechanisms had significantly lower levels of mathematical anxiety than those who used the conventional 

learning system.  

 

An ITS is a computer system that aims to provide immediate and individualized instruction or feedback to 

learners, usually without intervention from a human teacher (Patrut & Spatariu, 2016). ITSs have the potential to   
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help students manage their affect. For example, web cameras and sensors enable ITSs to capture students’ facial 

expressions and other physiological data that can be converted to affect information (i.e., Kołakowska et al., 

2020). Then, an ITS can use various algorithms to provide feedback directly or indirectly to learners about how 

they can regulate their emotions. To explore the impact of an ITS on students’ affect during learning, it is 

important to determine the mechanism of affect regulation and affect transitions when using an ITS.  

 

 

2. Affect regulation in intelligent tutoring systems 
 

2.1. Affect regulation and recognition 

 

Affect is a kind of inner reaction of cognitive activity. It greatly impacts an individual’s behavior. It can also 

influence an individual’s behavior indirectly through affect reinforcement (Zhang, 2008). The affect regulation 

process can suppress and weaken negative affect, and can also maintain and enhance positive affect (Gross & 

John, 2003; Thomspon, 1994). For example, e-learning with affect regulation can significantly improve math 

performance for students with autism spectrum disorder (Chu et al., 2020). The transition from negative affect to 

positive affect depends on external feedback and internal regulation. Russell (2003) describes affect as consisting 

of valence (pleasure to displeasure) and arousal (active to inactive). When plotted, valence increases from left to 

right along the x-axis, and arousal increases moving upwards on the y-axis (Posner et al., 2005). Generally, 

affective states relevant to learning include boredom, flow, confusion, frustration, surprise, and delight (Craig et 

al., 2004). Affect occurs between students’ cognitive balance and imbalance between boredom, frustration, 

confusion, and flow (D’Mello & Graesser, 2012). Boredom has negative valence and low arousal. Flow has 

positive valence and moderate arousal, whereas confusion has negative valence and moderate arousal. Finally, 

frustration has negative valence with high arousal (Baker et al., 2010). D’Mello and Graesser (2012) developed a 

model of affective state transitions based on this concept of equilibrium and disequilibrium by observing the 

main state transitions that occurred in AutoTutor (Nye, Graesser, & Hu, 2014) sessions. For example, flow may 

transition to confusion, which may transition to frustration or boredom (D’Mello et al., 2007).  

 

Currently, there are three methods that are typically used to detect affect. For example, affect can be detected by 

using external devices like cameras, recorders, or other sensors that collect student body expressions (e.g., 

postures and gestures), facial expressions, verbal expressions (e.g., tone and timbre), and physical and 

psychological information (e.g., heartbeat, blood pressure and skin conductance). Affect can also be tracked 

through surveys with various affect scales, including questionnaires, self-reports, observations, and interviews. 

For example, the User Engagement Survey (UES) is used to measure attention, endurance, and participation 

(Grafsgaard et al., 2012). The third method is through system analysis (Pentel, 2015). This involves analyzing 

affect based on student interaction logs, accessing paths, frequency of mouse clicks, duration of staying on the 

page, and interactions with an ITS. Due to the situational and persistent features of affect, scholars can predict 

the affect of the next moment using the affective characteristics (e.g., intensity and classification) of the previous 

moment (Yu et al., 2013). An API can match captured images of an individual with the system model and 

automatically segment the expression into units, then the program can analyze the affect segmentation points to 

output affect and features (Maheshwari & Nagendhiran, 2017). By using posture estimation (Grafsgaard et al., 

2012) and a gesture detection algorithm (Grafsgaard et al., 2012), a depth image regular pattern can be used to 

analyze the students’ interest and concentration in the learning content. Although the analysis of valence and 

arousal is an effective method for predicting affect, the affect transition framework (D’Mello et al., 2007; 

D’Mello & Graesser, 2012) provides essential theoretical support for further exploration affect regulation and its 

effect on learning.   

 

 

2.2. Affect regulation methods in intelligent tutoring systems  

 

ITSs have different ways of capturing data relevant to affective states, which can be used to inform future system 

actions. Some use domain-independent rules (e.g., IF-THEN) and non-independent strategies (e.g., “You have 

done well”), which are used to achieve affect reinforcement (D’Mello & Graesser, 2013). Some use decision 

trees and sequential covering algorithms (e.g., AQ, CN2 and PIPPER), which are used to extract dataset rules for 

learning diagnosis (Quinlan, 1990; D’Mello & Graesser, 2013). Others use probabilistic models, like dynamic 

decision networks, which can be used to diagnose, evaluate, predict, and determine affect (Conati, 2002). Some 

are based on affect stratification. For example, the Hidden Markov Model and Baum-Welch algorithm can be 

used to output state transition probability matrix and vector parameters to evaluate affect (Collins, 1990; Liu & 

Lemeire, 2017; Thornton & Tamir, 2017). Some use dynamic Bayesian networks to focus on the causes and 
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effects of affect, and probabilistic frameworks to handle high-level uncertainties to identify affect (Conati, 2002). 

Some use corpora, latent semantic analysis, word vectors and other analytical texts to predict affect response.  

 

Teaching agents in an ITS can respond to and regulate negative affect by providing appropriate tutoring 

strategies and feedback. D’Mello et al. (2010) observed postures, facial expressions, and dialogue cues to 

stimulate pedagogical interventions, regulate boredom, frustration, and confusion, and then promoted 

participation and task persistence in AutoTutor. Wayang Outpost (Arroyo et al., 2014) adopted heuristic 

strategies for responding to students’ affect, including text information and mapping learning behaviors. Their 

results showed that students can alleviate their boredom and change their behaviors based on digital interventions 

(Woolf et al., 2009). Although the students in the experimental and control group showed very similar feelings of 

pleasure, arousal, and dominance, Daradoumis and Arguedas (2020) found that the experimental group was 

slightly more expressive about their personal satisfaction through an affect pedagogical agent. Based on the 

theorized model of D’Mello and Graesser (2012), Alexandra et al. (2019) examined three types of affective 

transitions and their correlations with pretest-to-posttest learning. They found that the presence of boredom 

indicates a student’s knowledge state, but not their learning. In summary, ITSs are mostly used in one-to-one 

tutoring simulations of human teachers, and they use domain and student models to support students’ cognition 

and affect regulation.  

 

 

2.3. Affect regulation processes in intelligent tutoring systems 

 

Qin et al. (2014) built an affect compensation structure, using affect recognition, personalized affect regulation, 

and negative affect compensation. First, multi-modal methods (e.g., facial expressions, language, behavior, and 

interactive text) use high resolution cameras and wearable sensors to recognize students’ positive affect or 

negative affect, such as frustration. Next, personalized regulation methods are used to analyze the student’s 

characteristics and regulation strategies, and then judge the affect regulation methods. They then use affect 

compensation (including expert tutoring and peer help) to enhance the system’s confidence in the student’s 

optimal affective states. Affect compensation can optimize the affect database, and the affect database can be 

used for affect recognition and negative affect compensation. Finally, based on historical compensation cases 

and compensation lists, the systems can be used to alleviate negative affect. According to the affect 

compensation structure (Qin et al., 2014) and the affect recognition method, the four functional modules and the 

affect regulation processes can be implemented in an ITS (see Figure 1).  

 

The first module is an affect analysis module. Affect analysis is key to providing intervention strategies. System 

tracking can determine whether students have studied or not and can also track their affect and transitions. Affect 

extraction is defined as using self-report and text mining to extract affective valence and arousal. Affect 

recognition is based on recording and quantifying personal physiological, psychological, and cognitive 

information to detect affect states. For example, some scholars use cameras and wearable devices to identify 

student affect in MetaTutor (Harley et al., 2015). The second module is an intelligent agent module. This mainly 

involves an intelligent agent, like an expert, a teacher, or a peer, who is a virtual animated character that plays a 

certain role during an interactive session in an ITS. Expert agents have a wealth of knowledge in various 

disciplines and domains, such as students communicating with virtual doctors and patients, or reasoning about 

the patient symptoms of island residents in Crystal Island (Taub et al., 2017). Teacher agents track students’ 

knowledge construction processes, for instance, the agents in AutoTutor that judge questions and then give 

appropriate feedback by leveraging “expectation-misconception tailored dialogue” (D’Mello & Graesser, 2013). 

Peer agents in Betty’s Brain act as learning peers and assistants by using a learn-by-teaching method to build 

knowledge (Han et al., 2019). The third module is an affect regulation module. Students can regulate their affect 

by themselves and can also regulate their affect by external feedback and interventions. The external feedback 

and interventions are mostly based on an analysis of learning characteristics to achieve precise tracing and 

interventions with dialogues, student logs, and questionnaires in real-time. Self-report data from students suggest 

they can acquire appropriate affective and cognitive feedback automatically in Betty’s Brain (Biswas et al., 

2016). Students can adjust their cognitive affect in real-time based on lists and features selection methods, agent 

dialogue, problem clues, animation prompts and diagnostic reports (Taub et al., 2017). Sometimes, ITSs can 

present empathetic agents and virtual companions to augment students’ awareness of cognitive presence and 

affect presence, such as in Wayang Outpost (Arroyo et al., 2014). The fourth module is an intervention strategy 

module. Intervention strategies are the means and methods of affective intervention. Individual moods and 

cognitive dilemmas are affected by affect, and some scholars use self-explanations and learning-early-warnings 

to relieve learner confusion about stress analysis in Andes, an ITS for physics (VanLehn et al., 2010). Peer 

agents can intervene with students in mathematical problem solving in real time, such as SimStudent agent 

dialogues (Matsuda et al., 2013). Intelligent systems can provide adaptive resources and suggestions based on 

cognitive impairments or resources property. Taking Wayang Outpost as an example, the system can provide 
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cognitive clues and suggestions in addition to different media materials like video, sound, text, and test (Woolf et 

al., 2009). A system can provide hints and suggestions and help students solve problems correctly in 

ASSISTments, given the steps and results of students’ questions. (Heffernan & Heffernan, 2014). 

 

 
Figure 1. Affective regulation processes in intelligent tutoring environment (adapted from Qin et al., 2014) 

 

In general, based on personal records and known affect, an ITS analyzes resource acceptance manners, 

preferences, and moods, and uses personalized regulation strategies to increase and decrease positive and 

negative affect. It can supplement the affect database if the system does not have a student’s affect records. 

Tutoring strategies grounded in ITS cognitive principles and algorithms (i.e., error recognition and correction, 

student modeling, and natural language dialogue) instruct agents to indirectly address student affect. These 

strategies are also sent directly to students, which allow computers to act as virtual instructors to impart 

knowledge and provide adaptive feedback for students. Moreover, based on the frequency of mouse clicks and 

the path of page access, an ITS analyzes arousal and valence to predict the next affective state, and uses some 

encouragement, care, praise, and criticism via agents to optimize database adjustment strategies. Additionally, 

systems can inquire about learner’s affect and present them learning tasks and their progress, which can assist 

students in their learning introspection. In short, ITSs can help students avoid cognitive impasses, errors, and 

misconceptions, and can also alleviate negative affect. They use process supervision to promote students’ 

reflection and improve their cognition and metacognition. 

 

 

3. Research design 
 

This paper seeks to identify the affective experiences and effectiveness of using an ITS compared to a non-ITS 

learning environment. The learning content covered the ecological relationship between wolves, hunters, cows, 

deer, grass, rainfall, and other concepts about a forest ecosystem. For example, some lessons present these 

concepts in terms of an increase or decrease in water and food availability and how this affects the animal 

population.  

 

The experimental group used Betty’s Brain, an ITS developed by a combination of computer science, 

psychology, and education researchers in the engineering school of Vanderbilt University. The system uses 

virtual teachers (Mr. Davis) and virtual students (Betty) to intervene and guide students’ cognition and affect. 

The ITS consists of a “Causal Map,” “Science Book,” “Notes,” “Quiz Results,” and “Teacher’s Guide.” The 

control class used a non-ITS (F_S), which is based on Moodle 2.8 and covers the same domain and content as 

Betty’s Brain, including “Science Book,” “Notes,” “Quiz Results,” and “Teacher’s Guide.” F_S does not have 

virtual teachers and students, and participants used Microsoft Word to build causal relationships. 

 

Participants included 72 students in the seventh grade of a middle school in Changchun. Participants consisted of 

35 boys and 37 girls. All the students had no experience with using ITSs, and the two classes were taught by the 

same teachers.  

 

The experimental process was mainly divided into a teaching stage, autonomous learning stage and an after-class 

interview. In the teaching stage, teachers guided students through content with the theme of “forest ecosystem” 
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and taught them how to use a “Causal Map,” “Science Book,” “Notes,” “Quiz Results,” and “Teacher’s Guide” 

in 3 minutes. In the autonomous learning stage, students needed to construct a causality diagram in 25 minutes, 

during which we collected the video data. Afterwards some students needed to complete interviews lasting no 

longer than 13 minutes. 

 

This study used 46 Mosheng RQES008 HD digital cameras to capture facial expressions with a USB 2.0 

interface, and the cameras were assembled and installed on every computer. The coding of the types of affect 

was based on previous coding schemes used by McDaniel et al. (2007) and Altuwairqi et al. (2021). We referred 

to the facial expressions in the video data to judge students’ affect. Each coding result was recorded in a table, 

like Figure 2. 

 

 
Figure 2. Affect encoding sample in the control group 

                  

As is shown in Figure 2, the first row represents time, which is used to mark 25 encodings. The first column 

represents students’ identity, for example, stu1 as the first student. Affect for each timepoint were coded as either 

boredom, flow, confusion, frustration, surprise, delight, or none. After further observation and discussion, 

because some affective states, such as frustration or surprise were very rare, we only considered “boredom,” 

“flow,” “confusion,” “delight” and “no affect” in this paper. 

 

 

4. Results and analysis 
 

Two sets of 25-minute videos during the autonomous learning stage were used for analysis, which coded the 

following states of: “boredom,” “flow,” “confusion,” “delight” and “no affect.” Our coding process was handled 

and reviewed by two experimenters in charge. If the number of the matching codes is x, and the number of codes 

for each person is y, then the quotient (x/y) can be defined as the coding consistency. The two experimenters 

simultaneously encoded two of the same samples in order. After comparing and contrasting between both results, 

there were 37 matches in the 50 coded data points. In short, these were recorded every 30 seconds during the 

autonomous learning stage, and the video coding consistency between the two raters is (37/50) 74%. 

 

 

4.1. Affective cumulative analysis  

 

To analyze the overall affect distribution, the affective states of each group are summarized below. Taking the 

autonomous learning stage into account, twenty-five minutes of activities were recorded every 30 seconds. The 

numbers in the first row represent 50 different recordings, and the data represents the frequency of the 

corresponding affect. Taking the 21st encoding in the 22nd column in the control group as an example, 1 student 

showed “boredom,” 11 were in “flow,” 6 were “confused,” 2 showed “delight,” and for 14 of the students we 

were unable to determine their affect because they were off camera. Accordingly, the cumulative frequency of 

affect is summarized in Tables 1 and 2. 

 

Table 1. The affective accumulation table of the control group 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Boredom 1 2 1 1 0 1 1 0 1 1 3 1 4 2 2 2 1 2 2 0 1 0 2 2 1 

Flow 10 10 9 13 11 13 11 11 13 13 12 15 13 12 11 14 10 14 14 16 11 13 11 10 9 

Confusion 6 4 8 4 7 2 6 7 3 6 4 2 3 6 4 3 7 1 1 2 6 3 5 7 3 

Delight 4 1 1 1 1 1 0 0 1 1 1 1 1 1 2 0 2 1 2 0 2 0 0 2 0 

None 13 17 15 15 15 17 16 16 16 13 14 15 13 13 15 15 14 16 15 16 14 18 16 13 21 

Number 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

Boredom 1 0 1 0 1 3 1 2 0 0 0 2 1 1 0 0 0 0 0 0 1 1 1 0 2 

Flow 9 12 9 9 11 10 8 6 7 9 7 6 9 8 7 8 7 9 5 6 7 5 7 7 4 

Confusion 6 3 4 3 6 3 4 7 7 7 6 3 5 1 3 4 4 1 2 1 0 0 0 0 0 

Delight 2 3 2 1 1 0 2 2 2 2 2 1 1 2 1 0 0 2 1 1 0 0 0 0 0 

None  16 16 18 21 15 18 19 17 18 16 19 22 18 22 23 22 23 22 26 26 26 28 26 27 28 
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Table 2. The affective accumulation table of the experimental group 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Boredom 2 2 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 3 2 3 2 1 3 0 0 

Flow 17 14 12 15 17 22 22 20 23 20 23 24 27 27 26 23 25 23 21 25 27 23 24 26 28 

Confusion 3 3 7 5 6 2 4 7 2 6 5 4 1 2 5 6 3 5 8 3 4 6 4 3 2 

Delight 1 2 2 2 0 0 1 0 4 2 2 3 1 0 0 2 2 3 0 3 0 1 2 3 0 

None 15 17 17 16 15 14 10 11 8 9 8 7 8 9 6 6 8 4 7 4 5 7 5 6 8 

Number 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

Boredom 2 2 1 0 3 4 3 1 2 4 1 2 3 0 2 1 0 0 1 0 0 0 0 0 0 

Flow 27 19 24 25 22 19 24 25 20 18 16 17 18 18 15 14 14 13 10 11 9 9 9 9 9 

Confusion 1 5 4 4 1 5 1 2 5 3 4 2 2 1 1 2 1 0 0 0 0 0 0 0 0 

Delight 1 4 3 1 2 1 1 3 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 

None 7 8 6 8 10 9 9 7 11 12 17 17 15 19 19 19 23 25 27 27 29 29 29 29 29 

 

According to the accumulated frequency (as shown in Tables 1 and 2), we observed the following: 

• “Flow” and “none” frequently occurred during their learning processes followed with “confusion” in each 

group, “boredom” and “delight” occurred the least, according to the accumulated frequency. 

• Affect changes over time, so it follows that each affect here fluctuates across the recordings. For example, 

the frequency of “flow” is 9 to 16 in the first 25 recordings in the control group, and “flow” is 4 to 12 in the 

last 25 recordings.  

• Many of the affective states in the groups were coded as “none.” This is because the task was not completed, 

and the camera was disconnected. In this case, it is impossible to determine some affective states. For 

instance, the frequency of “none” fluctuated from 13 to 21 in the first 25 recordings, and then the frequency 

increased from 15 to 28 in the last 25 recordings in the control group.  

 

To summarize the overall affect distribution of each group, the cumulative data is represented by a bar graph as 

shown in Figures 3 and 4. 

 

 
Figure 3. The cumulative affect in the control group 

 

 
Figure 4. The cumulative affect in the experimental group 
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Twenty-five minutes of activity were recorded every 30 seconds, and 50 recordings are shown on the x-axis. The 

y-axis represents the cumulative percentage of each affect. Taking the 21st recording in the x-axis of the control 

group as an example, 3.0% of students were “bored,” 32.5% were in “flow,” 17.5% were “confused,” 5.5% 

showed “delight,” and 41.5% could not be determined. 

 

Figures 3 and 4 display the proportion of each affect at 50 different video captures throughout the learning 

sessions. For example, the proportion of “flow” in the experimental group is higher than that of the control group 

throughout the entire session. In the control group, “flow” increased from time 1 to time 3, peaked at the 20 th 

recording (about 47%), and then slowly declined to 11% by the 50th recording. Comparatively, “flow” in the 

experimental group fluctuated from approximately 32% to around 45% from time 1 to time 5, then gradually 

increased to about 74% at the 25th recording. It then gradually declined to roughly 24% by the 50th recording.  

 

In general, there was less “confusion” in the experimental group than the control group. In the control group, the 

proportion of “confusion” started at 17% and increased to about 21% by the 5th recording. From the 6th to the 45th 

recording, “confusion” fluctuated between approximately 3% to roughly 21%, and afterwards students did not 

show “confusion.” In the experimental group, the proportion of “confusion” fluctuated between about 2% to 

around 21% up to the 37th recordings, and students did not display “confusion” from the 43rd to the 50th 

recording. 

 

In summary, both the cumulative frequency and percentage of “flow” was significantly higher in the 

experimental group than that in the control group. The cumulative percentage of “confusion” was higher in the 

control group than that in the experimental group. There was no significant difference between the two 

conditions for the other affective states.  

 

 

4.2. Analysis of the difference in each group 

 

Generalized Sequential Querier (GSEQ) can be used to analyze sequence observation data. GSEQ can be used to 

perform coding and output the frequency of affect transitions (see Table 3). Here, the data consists of the 

frequency of transitions from the ith affect to the jth affect, denoted as Xij. The variable i represents the affect 

index of columns, j represents the affect index of rows, N represents the type of affect coded, and the range of 

changes both i and j is [1, N]. 

 

Table 3. Joint frequency table 

 

Control 

group 

Given Boredom Flow Confusion Delight None Totals 

Boredom 13 14 10 4 10 51 

Flow 11 341 59 17 61 489 

Confusion 10 56 74 10 39 189 

Delight 3 18 7 10 15 53 

None 15 54 33 8 774 884 

Totals 52 483 183 49 899 1666 

 

Experimental 

group 

Given Boredom Flow Confusion Delight None Totals 

Boredom 7 21 14 3 11 56 

Flow 21 795 69 29 49 963 

Confusion 11 71 49 7 16 154 

Delight 4 27 10 9 8 58 

None 11 41 9 9 561 631 

Totals 54 955 151 57 645 1862 

 

The frequency of each type of affective transition is different from each group (see Table 3). A total of 1666 

transformations were observed in the control group and 1862 changes in the experimental group. Frequent 

patterns (frequency greater than or equal to 30) include: “flow/confusion/none→flow/confusion/none” in the 

control group, “flow/confusion/none→flow,” “flow/confusion→confusion” and “none/flow→none” in the 

experimental group. Some frequent transition patterns we observed in both conditions are: “flow/confusion/none 

→flow,” “flow/confusion→confusion,” and “none/flow→none.” The transition patterns of “confusion→ none,” 

and “none→confusion” were frequent only in the control group. The frequencies of 

“flow/confusion/delight→bored,” “bored/flow/confusion/delight→flow,” “bored/flow/delight→confused,” 

“flow/none→delight,” and “bored→no affect” were all significantly higher in the experimental group than in the 

control group. The affect transition frequencies of “bored/none→bored,” “none→flow,” 



201 

“confusion/none→none/confused,” “bored/confused/delight→delight,” and “flow/delight→none” were 

significantly higher in the control group than in experimental group. 

 

The GSEQ tool calculated the expected frequency of affect transitions shown in Table 4, by using the observed 

frequencies shown in Table 3 and the Mij formula.  

 

     (1) 

 

Table 4. Expected frequency table 

 

Control group 

Given Boredom Flow Confusion Delight None 

Boredom 1.592 14.786 5.602 1.500 27.520 

Flow 15.263 141.769 53.714 14.382 263.872 

Confusion 5.899 54.794 20.761 5.559 101.987 

Delight 1.654 15.366 5.822 1.559 28.600 

None 27.592 256.286 97.102 26.000 477.020 

 

Experimental group 

 

Given Boredom Flow Confusion Delight None 

Boredom 1.624 28.722 4.541 1.714 19.398 

Flow 27.928 493.912 78.095 29.480 333.585 

Confusion 4.466 78.985 12.489 4.714 53.346 

Delight 1.682 29.748 4.704 1.776 20.091 

None 18.300 323.633 51.171 19.316 218.579 

 

Expected frequency Mij refers to the product of Xi,j=totals (sum of the frequencies at which all affective states turn 

into the jth affect) multiplied by Xi=totals,j (sum of the frequencies at which the ith affective state turns into all 

affective states) and the quotient of Xi=totals,j=totals (sum of all affect transitions). In other words, this formula is 

used to calculate the expectation of each transition, which is placed in all the transition processes. The expected 

affect frequency is different from the initial frequency, such as the joint frequency of transition of “flow” to 

“confusion” equals 59, and the expected frequency of the transition of “flow” to “confusion” equals 53.714. 

 

Some of the expected frequencies of affect transitions were significantly different between the two groups. The 

frequencies of “bored/flow/delight→bored,” “bored/confusion/delight/none/flow→flow,” “flow→confused,” 

“bored/flow/delight→delight” and “none→none” in the experimental group are higher than those in the control 

group. The frequencies of “confused/none→bored,” “bored/confused/delight/none→confused,” 

“confused/none→delight,” and “bored/confused/delight/none→none” in the control group are higher than those 

in the experimental group. 

 

Table 5. Summary table of adjusted residuals of affective transformation 

 

Control group 

Given Boredom Flow Confusion Delight None 

Boredom 9.330 -0.246 2.000 2.104 -4.999 

Flow -1.319 23.624 0.910 0.834 -21.899 

Confusion 1.822 0.205 13.153 2.031 -9.763 

Delight 1.080 0.811 0.526 6.974 -3.809 

None -3.555 -21.887 -10.064 -5.230 29.250 

 

Experimental group 

Given Boredom Flow Confusion Delight None 

Boredom 4.347 -2.096 4.701 1.013 -2.395 

Flow -1.915 27.936 -1.545 -0.129 -27.737 

Confusion 3.276 -1.344 11.253 1.116 -6.604 

Delight 1.843 -0.733 2.588 5.595 -3.390 

None -2.130 -27.685 -7.564 -2.932 35.234 

Note. |Zij|>1.96.  

 

This paper uses the Zij formula to calculate the adjusted residual value given the data shown in Table 4 and the 

joint frequencies in Table 5. 

     (2) 
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Zij is used to calculate the difference between the observation and the expectation. We use the formula 

(Haberman, 1979) to execute and compute the adjusted residual value. The product of probability of neither 

belonging to Xi,j=totals nor belonging to Xi=totals,j is used as the weight of Mij. The difference between the actual 

value and the expected value is used as the dividend, and the root of the expected value including weight is used 

as the divisor. The quotient of the two is called the adjusted residual value. The adjusted residuals are similar to 

Z-scores; Zij is normally distributed, and the Z-test can be used to test the statistical significance. According to 

the standard normal distribution in the Z-value table, Zij is substituted into the normal distribution to find the 

corresponding probability P-value. Also, |Zij|>1.96 (95% confidence interval) is selected to indicate a significant 

change in affect, which is marked in bold font.  

 

According to Table 5, the significant |Zij| is marked on the affect conversion graph, and the arrows point to the 

next affect of the transition, and thicker lines indicate more significance of the affect transitions. The conversion 

relationship is drawn, as shown in Figures 5 and 6. 

 

 We observed the following affective conversions.  

● There are repeating or recurrent patterns of affect conversions, which include: 

“boredom→boredom/confusion/none,” “flow→flow/none,” “confusion→confusion/none,” 

“delight→delight/none,” and “none→boredom/flow/confusion/delight/none.” The “boredom→boredom,” 

“confusion→confusion,” “confusion→none,” “none→confusion,” “delight→delight,” “delight→none,” 

“none→delight,” “boredom→none,” “none→boredom,” and “confused→delight” transitions are more 

significant than rest of the affect transition in both the control group and experimental group.  

● There are different transition patterns between the two groups. For example, “boredom/confusion→delight” 

is significant in the control group, but not in the experimental group. “Delight→confusion” and 

“confusion→boredom” are significant patterns in the experimental group, but not in the control group. 

Additionally, the transition of “boredom→delight” and “confused→delight” is significant in the control 

group, but not the experimental group. The transition of “delight→confused” and “confused→boredom” are 

significant in the experimental group, but not the control group.  

 

 
Figure 5. Affective conversion in the control group 

 

 
Figure 6. Affective conversion in the experimental group 

 

In summary, based on the data analysis above, we can see the specific difference and significance in each 

transition in each group. However, we cannot compare the specific Z-value across different groups, and we can 

only compare the Z-value in the inner group. 

 



203 

4.3. Analysis of the difference between the two groups of affect 

 

This paper analyzes the significance of the difference between the two groups, by using a multinomial processing 

tree (MPT) to analyze the frequency of transition (see the Table 3) in a general processing tree (GPT) software. 

The results are shown in Table 6.  

 

In Table 6, the parameters (PA) in the first column represents every transition in each group, for example, the 

CAA pattern refers to the A→A in the control group, and EAA refers to the A→A in the experimental group. 

The star sign (*) in the first column in the table refers to the parameter(s) that are restricted as constant. 

Additionally, in the second column, EV is the estimated value of the parameter. SD refers to standard deviation 

in the third column. For the confidence intervals (CI), in the fourth column, LO represents the lower limit of the 

confidence interval and UP represents the upper limit of the confidence interval in the fifth column. “Sig of 

Difference” refers to the statistical significance of the difference in artificial processing. “LO_SI” shows the 

lower limit of the significance of the difference, and the last column shows the upper limit of the significance of 

the difference (UP_SI).  

 

By using the confidence interval of the parameter estimation values in the groups, we can directly assess the 

difference of the significance of the difference of the parameter. The LO_SI of difference value equals the upper 

limit of the confidence interval in the experimental group. The negative sign corresponds to the lower limit of the 

confidence interval in the control group. Similarly, the UP_SI of difference value equals the upper limit of the 

confidence interval in the control group minus corresponds to the lower limit of the confidence interval in the 

experimental group. The difference is significant if the one of the LO_SI value and UP_SI value is less than 0, 

otherwise it cannot be intuitively judged. 

 

Table 6. Analysis in model multinomial processing tree 

Control Group Experimental Group 

Sig of Difference 

PA EV SD 

95% CI    95% CI 

LO UP PA EV SD LO UP LO_SI UP_SI 

CA* 0.031 constant   EA* 0.030 constant     
CAA 0.255 0.061 0.135 0.375 EAA 0.125 0.044 0.038 0.212 0.076 0.336 

CAB 0.275 0.062 0.152 0.397 EAB 0.375 0.065 0.248 0.502 0.350 0.149 

CAC 0.196 0.056 0.087 0.305 EAC 0.250 0.058 0.137 0.363 0.276 0.168 

CAH 0.078 0.038 0.005 0.152 EAH 0.054 0.030 -0.005 0.113 0.108 0.158 

CB* 0.294 constant   EB* 0.517 constant     
CBA 0.022 0.007 0.009 0.036 EBA 0.022 0.005 0.013 0.031 0.022 0.023 

CBB 0.697 0.021 0.657 0.738 EBB 0.826 0.012 0.802 0.850 0.193 -0.064 

CBC 0.121 0.015 0.092 0.150 EBC 0.072 0.008 0.055 0.088 -0.004 0.094 

CBH 0.035 0.008 0.019 0.051 EBH 0.030 0.006 0.019 0.041 0.022 0.032 

CC* 0.113 constant   EC* 0.083 constant     
CCA 0.053 0.016 0.021 0.085 ECA 0.071 0.021 0.031 0.112 0.091 0.054 

CCB 0.296 0.033 0.231 0.361 ECB 0.461 0.040 0.382 0.540 0.309 -0.021 

CCC 0.392 0.036 0.322 0.461 ECC 0.318 0.038 0.245 0.392 0.070 0.216 

CCH 0.053 0.016 0.021 0.085 ECH 0.045 0.017 0.013 0.078 0.057 0.072 

CG* 0.472 constant          
CGA 0.017 0.004 0.008 0.025 EGA 0.017 0.005 0.007 0.028 0.019 0.018 

CGB 0.061 0.008 0.045 0.077 EGB 0.065 0.010 0.046 0.084 0.039 0.031 

CGC 0.037 0.006 0.025 0.050 EGC 0.014 0.005 0.005 0.024 -0.001 0.045 

CGH 0.009 0.003 0.003 0.015 EGH 0.014 0.005 0.005 0.024 0.021 0.010 

CH* 0.032 constant   EH* 0.031 constant     
CHA 0.057 0.032 -0.006 0.119 EHA 0.069 0.033 0.004 0.134 0.140 0.115 

CHB 0.340 0.065 0.212 0.467 EHB 0.466 0.066 0.337 0.594 0.382 0.130 

CHC 0.132 0.047 0.041 0.223 EHC 0.172 0.050 0.075 0.270 0.229 0.148 

CHH 0.189 0.054 0.083 0.294 EHH 0.155 0.048 0.062 0.248 0.165 0.232 

Note. A refers to boredom, B refers to flow, C refers to confusion, H refers to delighted, G refers to no affect. 

 

According to the MPT model (as shown in Table 6), some affect transitions are significantly different between 

the two groups, and the significant transitions are bolded in the table. For instance, the B→B transition in the 

experimental group (estimated value = 0.826, SD = 0.012, lower limit of the confidence interval = 0.802) is 

significantly higher than the B→B in the control group (estimated value = 0.697, SD = 0.021, upper limit of 

confidence interval = 0.738); the C→B in the experimental group (estimated value = 0.461, SD = 0.040, lower 
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limit of confidence interval= 0.382) is significantly higher than the C→B in control group (estimated value = 

0.296, SD = 0.033, upper limit of confidence interval = 0.361). The B→C (estimated value = 0.072, SD = 0.008, 

upper confidence interval= 0.088) in the experimental group is significantly smaller than B→C in the control 

group (estimated value = 0.121, SD = 0.015, lower confidence interval = 0.092). The G→C in the experimental 

group (estimated value =0.014, SD = 0.005, upper confidence interval = 0.024) is significantly smaller than in 

the control group (estimated value = 0.037, SD = 0.006, lower confidence interval = 0.025). The results of a chi-

square test indicate that there are significant differences in the affective transitions between both groups (X2[9] = 

0.01988).  

 

According to the affect transitions of the two groups in Table 3, this paper calculates the difference between 

combined frequency of affect changes in two groups, denoted as X′
ij, which represents the difference of 

frequency between the ith affect and the jth affect transition, see Table 7. 

 

Table 7. The combined frequency of the difference between the two groups 

Given  Boredom Flow Confusion Delight None Totals 

Boredom -6 7 4 -1 1 5 

Flow 10 454 10 12 -12 474 

Confusion 1 15 -25 -3 -23 -35 

Delight 1 9 3 -1 -7 5 

None -4 -13 -24 1 -213 -253 

Totals 2 472 -32 8 -254 196 

 

According to the value of X′
ij, the combined frequency is different from the initial joint frequency. Some 

transitions in the experimental group were less than those in the control group, such as, “none→none,” 

“confusion→confusion,” “none→confusion,” “confusion→none,” and “none→flow.” Some affective changes in 

the experimental group are more frequent than those in the control group, for instance, “flow→flow,” 

“confusion→flow,” and “flow→delight.” 

 

According to the frequency of transformation in Table 7, this article calculates the expected transformation of the 

difference between the experimental group and the control group, denoted as M′
ij, which represents the expected 

frequency of transformation from the ith affect to the jth affect. 

 

  (3) 

 

Table 8. The expected frequency of the difference between the two groups  

Given Boredom Flow Confusion Delight None 

Boredom 0.051 12.041 -0.816 0.204 -6.480 

Flow 4.837 1141.469 -77.388 19.347 -614.265 

Confusion -0.357 -84.286 5.714 -1.429 45.357 

Delight 0.051 12.041 -0.816 0.204 -6.480 

None -2.582 -609.265 41.306 -10.327 327.867 

 

According to the expected frequency (as shown in Table 8), the difference frequency between the two groups is 

also different from the combined frequency (as shown in Table 7). Some transitions in the experimental group 

are less than those in the control group including: “flow→none,” “none→flow,” “confusion→flow,” 

“flow→confusion,” “none→delight,” “boredom→confusion,” “boredom→none,” “delight→none,” 

“none→boredom,” “confusion→delight,” “delight→confusion,” and “confusion→boredom.” Some changes in 

the experimental group are more likely than that in the control group including: “flow→flow,” “none→none,” 

“confusion→none,” “none→confusion,” “flow→delight,” “delight→flow,” “boredom→flow,” 

“confusion→confusion,” “flow→boredom,” “boredom→delight,” “delight→delight,” “delight→boredom,” and 

“boredom→boredom.”  

 

Z′
ij is used to calculate the difference between observations and expectations. The product of the probabilities of 

neither belonging X′
i,j=totals nor belonging X′

i=totals,j is used as the weight of M′
ij. The difference between the initial 

value and the expected value is used as a dividend, and weighted expected value is used as a divisor, and a 

quotient of the two is called the adjusted residual value. 
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According to frequency (Table 7) and expectation (Table 8), this paper calculates the adjusted residual value, 

which is expressed as Z′
ij (see Table 9). 

 

 (4) 

 

Table 9. The residual of the difference between the two groups 

Given Boredom Flow Confusion Delight None 

Boredom -27.277 -1.240 5.007 -2.757 1.964 

Flow 1.981 -14.398 7.734 -1.432 13.466 

Confusion 2.103 8.395 -10.973 -1.237 -6.170 

Delight 4.278 -0.748 3.967 -2.757 -0.137 

None -0.586 13.450 -6.225 2.378 -13.025 

Note. |Z′
ij|>1.96. 

 

As shown in Table 9, the significant Z′
ij is marked on the affect conversion graph, with the arrows pointing to the 

next affect of the transition. Thicker lines indicate more significance of the affect transitions. The conversion 

relationship is drawn, as shown in Figure 7. 

 

 
Figure 7. Affective conversion diagram of the groups 

 

According to the residuals in Figure 7, some patterns with significant differences between the groups were 

observed, which include: “none→flow,” “flow→none,” “confusion→flow,” “flow→confusion,” 

“boredom→confusion,” “boredom→boredom,” “flow→flow,” “confused→confused,” and “none→none.” 

 

In summary, there are significant differences between the two groups in affective transitions, especially when 

negative affect transformed into positive affect, such as “confusion/none→flow” and “none/boredom→delight.” 

There are significant differences in negative affect changes. Positive affect transformed into positive affect, such 

as “flow→flow” and “delight→delight.” Additionally, there are positive changes into negative, such as 

“flow/delight→bored/confused.” There are also negative affect changes into negative, such as 

“confusion→boredom” and “boredom→confusion.” Finally, there are also significant differences for the 

transitions of “boredom/flow/confusion/none→none.” 

 

 

5. Conclusion  
 

This paper first summarized the affect regulation methods supported by teachable agents and the affect 

regulation processes in ITSs. Four ITS functions that can be used to detect or help regulate affect were described. 

To supervise and adjust negative affect, ITSs use intelligent algorithms and technologies to analyze learning data 

(e.g., cognition and mood), determine learning affect, and then provide reasonable and flexible strategies (e.g., 

refined learning materials) or rigid strategies (e.g., simple rehearsing). 

 

According to the accumulation analysis, students in the experimental group were prone to “confusion” and 

“boredom,” but they spent more time in a “flow” state. It should be noted that while “confusion” is typically 

thought of a negative affective state, research has shown that it can be beneficial to learning when it does not 
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lead to “frustration,” “boredom,” and disengagement (D’Mello, et al., 2014). With the system’s help, students 

adjusted these negative affective states to “delight” and “flow.” The use of scaffolds (such as prompts, tests, 

responses, and notes) often showed that students were surprised about their results. The “flow” state was more 

common in the experimental group than the control group, which suggests a higher degree of concentration in 

the experimental group. Therefore, the affect of the experimental group was more positive than in the control 

group. 

 

Lag sequence analysis was used to analyze the different affect transitions in each group (see Table 3). The 

quantity of the affect transitions in the two groups is different and the frequency of standardized emotional 

transitions of two groups are also different (Table 4). The adjusted residual value of each affect transition in each 

group is standardized and the size indicates differing scales of affect transition in the groups. Significant 

differences were observed for each type of affect transition.  

 

To further explore the differences in emotional transitions between the two groups, we used the MPT method to 

analyze the differences in affect transitions between the two groups. The results revealed significant differences 

in the transitions of the two groups in individual affect transition types. For example, the transitions from “flow” 

to “flow” (i.e., staying in a “flow” state) and “confusion” to “flow” (i.e., resolving some “confusion”) in the 

experimental group are significantly higher than the same transitions in the control group. The transition from 

“flow” to “confusion” (i.e., reach an impasse) and “none” to “confusion” in the experimental group are 

significantly lower than the same in the control group. There are not only internal differences in each group, but 

also significant differences between the two groups, which we observed from our lag sequence analysis (see 

Tables 7 and 9). For example, in the control condition, the likelihood of students remaining in a “bored” state 

(“bored —>bored”) is stronger (i.e., more significant) than in the experimental group. Comparatively, students in 

the experimental condition remained in a confused state less frequently than in the control condition. 

 

We suggest two reasons for the occurrence of positive affect regulation, based on our observations of the video 

data and after-class interviews. First, learning with an ITS is engaging and has game-like features. With Betty’s 

Brain, students learned about biological relationships and exercised thinking strategies to solve a task. A second 

reason why positive affect regulation occurred may be in part due to the virtual characters that help students find 

content related to the task at hand. This is consistent with the experimental conclusion of Segedy et al. (2014), 

who also used Betty’s Brain for their study. They found that the ITS provides students with the necessary support 

in a timely manner, so that students can apply cognitive and metacognitive strategies to solve “cause-and-effect” 

problems. They also concluded that the system helps promote students’ deep learning and guides them to use 

suitable strategies to solve problems. Some students in the experimental group began to use more optimized logic 

to complete tasks. This indicates that they consciously took advantage of the system’s cognitive and 

metacognitive scaffolds to assess causality. These help students better regulate their affect and enhance their 

learning effectiveness. As one participant said, “I study causality very seriously. I always hope to teach students 

the correct knowledge. Therefore, I am confident that I can complete this task.” This sentiment is consistent with 

the Kobylińska and Karwowska (2015) research on using automated affect regulation to influence students’ 

negative affective experience. Students in the experimental condition appeared to be attending to the tasks at 

hand, given their time spent on task and mouse click frequency within the interface. While students were 

attending to the tasks, the ITS helped students become aware of their affect through dialogue. Students could 

then report their affective state to the teacher agent. Accurately grasping affect perception, evaluation, and 

expression requires understanding affect and affective knowledge, controlling affect and affective intelligence 

development, and thereby enhancing students’ ability to recognize, regulate and manage affect. 

 

This study took into account the affect transitions both within and between the two groups. However, this study 

has some limitations. Differences in the learning level and cognitive development of students varies by region, so 

the conclusions of this experiment may not be universal. It is also necessary to combine iterative experiments to 

avoid time shortage and contingency problems. It is possible to gain more fruitful results after multiple rounds of 

repeated experiments. We encoded students’ affect by human observation, so the results may have some bias, so 

it is necessary to adopt artificial intelligent technologies to analyze the specific information automatically. A 

large amount of data is needed to further explore the deep relationship between affect regulation and cognition. 

Likewise, future studies can capture video and audio data more frequently, which would strengthen the reliability 

of the results. It is also necessary to collect both cognitive and metacognitive data at the same time. This allows 

for an exploration of the in-depth relationship between affect and metacognition by using a multi-branch tree 

analysis. Hwang et al. (2020) reported that changes in affect result in performance changes. Therefore, future 

studies of affect regulation in ITSs would benefit from tracking both affect changes and performance changes 

over time.  
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