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ABSTRACT: In recent years, the rapid development of artificial intelligence has increased the power of 

personalized learning. This study aimed to provide personalized intervention for each group participating in 

computer-supported collaborative learning. The personalized intervention adopted a deep neural network model, 

Bidirectional Encoder Representations from Transformers (BERT), to automatically classify online discussion 

transcripts and provide classification results in real time. Personalized feedback and recommendations were 

automatically generated from the classification results. A quasi-experimental research design was adopted to 

examine the effects of the proposed personalized intervention approach on collaborative knowledge building, 

group performance, socially shared metacognitive regulation, and cognitive load. Sixty-six college students 

participated in this study and were randomly assigned to the experimental and control groups. For online 

collaborative learning, students in the experimental group adopted the personalized intervention approach, 

whereas those in the control group used the conventional approach. Both quantitative and qualitative research 

methods were adopted to analyze data. The results indicated significant differences in the level of collaborative 

knowledge building and group performance between the experimental and control groups. Furthermore, the 

experimental group demonstrated more socially shared metacognitive regulation than the control group. There 

was no significant difference in cognitive load between the experimental and control groups. The results 

obtained from interviews were consistent with the quantitative data. The main findings together with the 

implications for practitioners are discussed in depth. 
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1. Introduction 
 

Computer-supported collaborative learning (CSCL) has been widely adopted in the field of education. CSCL is 

an effective pedagogical approach that aims to foster the social nature of learning (Jeong, Hmelo-Silver, & Jo, 

2019), to co-construct shared understanding and intersubjective meaning making (Stahl, 2006). CSCL is 

sustained by group interaction to promote socialized learning (Hernández-Sellés, Muñoz-Carril, & González-

Sanmamed, 2019). Most research topics in the field of CSCL center on discourse and pattern, factors influencing 

CSCL, methodology, scripting, scaffolding, and the development of CSCL environments (Tang, Tsai, & Lin, 

2014). However, there is still a need to provide personalized intervention in CSCL. To achieve this, it is 

necessary to automatically analyze the large amount of data generated in CSCL. Previous studies adopted 

traditional machine learning methods to analyze CSCL data. For example, Mu, Stegmann, Mayfield, Rosé, and 

Fischer (2012) adopted such methods to automatically segment online discussion transcripts in CSCL. However, 

conventional machine learning methods depend heavily on human-designed features (Hadi, Al-Radaideh, & 

Alhawari, 2018) and there is a lack of semantic representations (Shan, Xu, Yang, Jia, & Xiang, 2020), which 

results in poor performance. 

 

With the rapid development of modern artificial intelligence (AI), AI applications have attracted increasing 

interest in the field of education (Chen, Xie, & Hwang, 2020). One of the missions of AI in education is to 

provide personalized guidance, support, or intervention, based on learning status or characteristics (Hwang, Xie, 

Wah, & Gašević, 2020). However, the provision of personalized intervention to improve learning is still 

underdeveloped (Hsu, Chiou, Tseng, & Hwang, 2016). Furthermore, although previous studies have exploited 

conventional machine learning, little work has been done to adopt deep learning technologies in the field of 

education (Chen, Xie, Zou, & Hwang, 2020). Deep neural networks (DNNs), the type of neural networks used in 

deep learning, are now able to exceed human accuracy in many fields (Sze, Chen, Yang, & Emer, 2017). 

 

To the best of our knowledge, studies on the real-time analysis of online discussion transcripts gathered during 

CSCL is very rare, and research on personalized intervention using modern AI techniques in the CSCL context 

https://creativecommons.org/licenses/by-nc-nd/3.0/
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remain lacking. Additionally, it was found that the use of technology may increase cognitive load (Wu, Huang, 

Su, Chang, & Lu, 2018). Moreover, the particular intervention could have an impact on socially shared 

regulation in CSCL context (Lin, 2018). It is very important to investigate the effects of personalized 

intervention on cognitive load and socially shared metacognitive regulation (SSMR), since few studies to date 

have examined the issues. Given the scarcity of related studies, this paper proposes a personalized intervention 

approach based on DNNs and examines the effects of this approach on collaborative knowledge building, group 

performance, socially shared metacognitive regulation, and cognitive load. The following research questions are 

addressed: 

(1) Can the personalized intervention approach improve collaborative knowledge building, compared with the 

conventional online collaborative learning approach? 

(2) Can the personalized intervention approach improve group performance, compared with the conventional 

online collaborative learning approach? 

(3) Can the personalized intervention approach enhance SSMR, compared with the conventional online 

collaborative learning approach? 

(4) Can the personalized intervention approach increase cognitive load, compared with the conventional online 

collaborative learning approach? 

 

 

2. Literature review 
 

2.1. Computer-supported collaborative learning 

 

CSCL is concerned with how people learn together with the help of computers (Stahl, Koschmann, & Suthers, 

2014). During CSCL, learners communicate and collaborate using digital tools to complete collaborative 

learning tasks together. CSCL has contributed significantly to enabling learners to acquire knowledge and 

improve skills (Chen, Wang, Kirschner, & Tsai, 2018). Recently, growing interest was paid to SSMR in CSCL 

context. SSMR is defined as learners’ goal-directed, consensual, and complementary regulation of joint cognitive 

processes in collaborative learning (Iiskala, Vauras, Lehtinen, & Salonen, 2011). SSMR focused on the 

metacognitive regulatory episodes at the group level and played a very crucial role in CSCL (De Backer, Van 

Keer, & Valcke, 2020). Furthermore, CSCL emphasizes the co-construction of knowledge and skills by learners 

through social interaction (Dillenbourg, 1999; Chen et al., 2018). Therefore, social interaction is the crucial 

element of collaborative learning (Kreijns, Kirschner, & Jochems, 2003). In the CSCL context, large amounts of 

data are generated through social interaction, and these data need to be analyzed immediately to provide real-

time feedback to learners.  

 

Previous studies have adopted various methods to analyze the data generated during CSCL. For example, social 

network analysis has often been employed to analyze and visualize the relationships and patterns of interaction in 

CSCL (Dado & Bodemer, 2017). Epistemic network analysis has been adopted to analyze discourse data to 

model a cognitive network (Shaffer, Collier, & Ruis, 2016). Furthermore, a social epistemic network signature 

has been proposed to analyze the social and cognitive dimensions of collaborative learning (Gašević, 

Joksimović, Eagan, & Shaffer, 2019). In addition, content analysis is a commonly adopted technique for the 

analysis of discussion transcripts generated in CSCL (Strijbos, Martens, Prins, & Jochems, 2006). Content 

analysis has often been used to analyze knowledge construction (Gunawardena, Lowe, & Anderson, 1997), 

cognitive presence (Garrison, Anderson, & Archer, 2001), argumentation (Weinberger, Stegmann, Fischer, & 

Mandl, 2007), self-regulated learning in collaborative learning (Sobocinski, Malmberg, & Järvelä, 2017), and 

collective creativity (Tan, Caleon, Jonathan, & Koh, 2014). Moreover, lag sequential analysis has also been 

employed to analyze behavioural transition (Zheng, Li, Zhang, & Sun, 2019) and temporal differences (Lämsä, 

Hämäläinen, Koskinen, Viiri, & Mannonen, 2020). However, the aforementioned analysis method was 

conducted manually to perform lag analysis of discussion transcripts during CSCL. Therefore, it was very 

difficult to use the lag analysis results to provide real-time feedback and intervention. To progress to a deep 

understanding of the CSCL process, there is an urgent need to conduct real-time analysis to provide personalized 

intervention for learners. 

 

 

2.2. Personalized intervention 
 

Learning intervention is conceptualized as the design of supporting strategies and guiding activities to improve 

learning performance (Zhang, Fei, Quddus, & Davis, 2014). Early learning intervention was employed in the 

field of special education to provide remedial education for students with learning difficulties (Mesmer & 

Mesmer, 2008). Subsequently, researchers examined the effects of learning intervention in different learning 
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settings. For example, Westenskow, Moyer-Packenham, and Child (2017) implemented one-on-one tutoring 

intervention in the classroom for pupils with low mathematics achievement and found that the intervention 

produced positive results. Hwang, Chang, Chen, and Chen (2018) engaged students in a four-week mobile 

learning intervention and found that they outperformed comparable students, in terms of learning achievements 

and learning motivation. Furthermore, Liu, McKelroy, Corliss, and Carrigan (2017) used the adaptive learning 

system to implement intervention, and found that adaptive learning intervention contributed to addressing the 

knowledge gap in chemistry. Hwang, Sung, Chang, and Huang (2020) developed a fuzzy expert system-based to 

implement adaptive learning intervention through analyzing the learners’ cognitive and affective status. 

 

Personalized intervention means that different learners receive different types of intervention, based on their 

learning status (Zhang, Zou, Miao, Zhang, Hwang, & Zhu, 2020). Early personalized intervention was 

implemented through instructors’ observations. In recent years, the development of learning analytics has 

increased the power of personalized intervention. Teachers or staff can provide personalized intervention based 

on the results of learning analytics. For example, Yi et al. (2017) implemented personalized intervention through 

bulletin messages and email in an online learning environment. Zhang et al. (2020) enacted personalized 

intervention through individual interviews or sending learning reports, to improve academic performance and 

learning behaviours in a blended learning setting. Furthermore, Yang, Ogata, Matsui, and Chen (2021) believed 

that artificial intelligence is shifting from technology to humanity, which means that AI should shift from 

improving productivity to considering human conditions and having a human-oriented approach. Therefore, 

personalized intervention should shift from technology-oriented intervention to human-oriented intervention. 

Previous studies implemented interventions to facilitate collaborative learning through scaffolding (Shin, Kim, & 

Song, 2020), a digital educational intervention (Männistö et al., 2019) or a metacognitive intervention (Smith & 

Mancy, 2018). However, very few studies have conducted personalized intervention in the CSCL context. 

Moreover, there is still a lack of studies on personalized intervention based on modern AI technologies. 

 

 

2.3. Modern artificial intelligence in education 

 

AI can be defined as “computers that mimic cognitive functions that humans associate with the human mind, 

such as learning and problem-solving” (Russell & Norvig, 2009, p. 2). Traditional AI has usually adopted rule-

based or statistical models for prediction (Chen et al., 2020). However, modern AI employs DNN techniques 

(Yosinski, Clune, Bengio, & Lipson, 2014). Since the development of modern AI, DNNs have been used in 

many domains, such as natural language processing, speech recognition, image recognition, decision making, 

and robotics (Hwang et al., 2020). 

 

Typical DNN models include convolutional neural networks (CNNs), recurrent neural networks (RNNs), long 

short-term memory network (LSTM) networks, and bidirectional long short-term memory (BiLSTM) networks. 

The CNN was proposed by LeCun, Bottou, Bengio, and Haffner (1998) and consists of an input layer, 

convolution layer, pooling layer, fully connected layer, and output layer. RNNs are designed to deal with (time) 

sequential data to represent relationships among data points (Schuster & Paliwal, 1997). Based on RNNs, LSTM 

networks are designed to overcome back-propagation problems; they include an input gate, forget gate, and 

output gate (Hochreiter & Schmidhuber, 1997). Because of their superior ability to preserve sequence 

information over time, LSTM networks have obtained strong results in a variety of sequence modelling tasks 

(Tai, Socher, & Manning, 2015). Furthermore, BiLSTM networks were proposed to overcome the shortcomings 

of LSTM; a BiLSTM network consists of LSTM units that operate in both directions to analyze the features of 

the future and the past (Graves & Schmidhuber, 2005). 

 

These DNN models provide the potential for facilitating and optimizing learning in the field of education. For 

example, Xing and Du (2019) adopted a deep learning algorithm to predict MOOC dropout and provide 

personalized intervention for at-risk students. Wei, Lin, Yang, and Yu (2017) developed a convolution-LSTM-

based model to conduct sentiment analysis of cross-domain MOOC forum postings. Jin, Li, Wang, Zhang, Lin, 

and Yin (2019) developed a drawing learning system, based on the generative adversarial network, to aid pencil 

drawing; they found that the system promoted the learners’ interest in pencil drawing. Park, Mott, Min, Boyer, 

Wiebe, and Lester (2019) proposed a multistep deep convolutional generative adversarial network to generate 

educational game level for computer education. Nevertheless, to the best of our knowledge, very few studies 

have adopted DNNs in the field of CSCL. It should be noted that DNNs is designed for learning tasks with 

sequential data and DNNs achieved better performance than traditional machine learning (Prusa & Khoshgoftaar, 

2017). Therefore, DNNs is very appropriate for online discussion text classification since the discussion 

transcripts can be represented as sequences of words. Thus, this study adopted DNNs to provide real-time 

analysis of online discussion transcripts and personalized intervention in online collaborative learning. 
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3. Personalized intervention based on a deep neural network model 
 

This study evaluated a personalized intervention approach to improve collaborative knowledge building, group 

performance, and SSMR. This approach included three phases, namely data collection, data analysis, and 

personalized intervention. Figure 1 shows the framework of the proposed personalized intervention approach. In 

the first phase, participants completed the online collaborative learning task about computer networks. Figure 2 

shows a screenshot of the online collaborative learning platform. All of the participants participated in online 

collaborative learning through the same platform, which also recorded the online discussion transcripts of all 

groups. To be noted that only learners in the experimental group can click the button of the latest progress to 

browse the analysis results. 
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Figure 1. The personalized intervention framework 

 

In the second phase, online discussion transcripts were analyzed in real time through statistical analysis and 

DNN analysis. The statistical analysis of social interaction included the analysis of the number of posts, duration, 

interaction frequency, and word cloud. In addition, online interactive behaviors and metacognition of the 

experimental groups were automatically classified by a DNN model. With regard to interactive behaviors, the 

online discussion transcripts of the experimental groups were automatically classified into five categories 



178 

proposed by authors, namely knowledge building, regulation, support and agreement, asking questions, and off-

topic information. With regard to metacognition, the online discussion transcripts were automatically classified 

into four categories adapted from Zheng (2017), namely planning, monitoring, reflection and evaluation, and off-

topic information. The automatic classification results were displayed through a visualization chart and learners 

could browse at any time. The DNN model was Bidirectional Encoder Representations from Transformers 

(BERT), which was proposed by Devlin, Chang, Lee, and Toutanova (2019). BERT includes pretraining of deep 

bidirectional representations and fine-tuning with one additional output layer (Devlin et al., 2019). BERT is 

trained through the masked language modeling task and independently recovers the masked tokens (Minaee, 

Kalchbrenner, Cambria, Nikzad, Chenaghlu, & Gao, 2020). In previous studies, BERT achieved the best 

performance in text classification (González-Carvajal & Garrido-Merchán, 2020). In this study, BERT-Base in 

Chinese was selected as the pretrained model, 70% of the data were selected as the training set, and 30% were 

selected as the test set. The parameters were set as follows: the maximum sequence length was 128, the train 

batch size was 32, the learning rate was 5e-5, and the numbers of train epochs was 3. In addition, other models 

were used to compare the classification accuracy, as shown in Table 1. It was found that BERT achieved the 

highest accuracy in terms of interactive behaviors and metacognition classification. Figure 3 shows a screenshot 

of the statistical result on social interaction and the automatic classification results. 

 

 
Figure 2. The screenshot of CSCL platform 

 

In the third phase, personalized intervention was provided, based on the analysis results. When the analysis 

results exceeded the intervention thresholds, our system provided personalized group feedback and 

recommendations. Personalized group feedback included interactive behaviors and metacognition classification 

results of each group as well as explanations. For example, when the classification result about interactive 

behaviors showed that there was off-topic information, the system provided the personalized group feedback 

“Please focus on the collaborative learning task and don’t discuss off-topic information.” When there was more 

information about asking questions, the system provided the feedback “Please communicate with your peers to 

solve problems together. Go ahead!” In addition, when the classification result about metacognition revealed that 

there was little information about reflection and evaluation, the system provided the feedback “Please reflect and 

evaluate the collaborative learning progress and group product. Your group can refine the group product further.” 

Figure 4 shows a screenshot of the personalized group feedback. Moreover, the personalized intervention also 

provided personalized recommendations and suggestions for learning resources, supporting strategies, and 

guiding activities. For example, when there were few messages about knowledge building, the system 

recommended and demonstrated learning materials and knowledge graphs about computer networks. When the 

classification result about metacognition revealed that there were few messages about planning, the system 

recommended the construction of a detailed plan about role assignment and scheduling. When the classification 

result about metacognition revealed that there was little information about monitoring, the system suggested that 

the group members should monitor and control the collaborative learning process further. Figure 5 and Figure 6 

show screenshots of personalized recommendations. 
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Table 1. The accuracy of different models 

Models Classifications Accuracy 

BERT Interactive behaviors  0.87 

Metacognition 0.89 

LSTM Interactive behaviors  0.63 

Metacognition 0.85 

BiLSTM Interactive behaviors 0.61 

Metacognition 0.85 

Support Vector Machine Interactive behaviors 0.65 

Metacognition 0.71 

Logistic Regression Interactive behaviors 0.64 

Metacognition 0.76 

 

 
Figure 3. The screenshot of classification results 
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Figure 4. The screenshot of personalized group feedback  

 

 
Figure 5. The screenshot of personalized resources recommendations 
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Figure 6. The screenshot of personalized recommendations 

 

 

4. Method 
 

4.1. Participants 

 

The participants in the study were from a university in Beijing and were enrolled through posters on campus. 

Sixty-six college students participated, including eight males and 58 females, with an average age of 21. They 

majored in education, psychology, history, politics, AI, mathematics, physics, and chemistry, but all participants 

had prior knowledge about computer networks. All participants were randomly assigned to 11 experimental 

groups and 11 control groups. Each team contained three students who had not previously collaborated. 

 

 

4.2. Experimental procedure 

 

The experimental procedure included four phases. In the first phase, a pre-test about prior knowledge was 

conducted. The results of the pre-test indicated that there was no significant difference in prior knowledge 

between the experimental group and control group (t = .68, p = .49). In the second phase, the online collaborative 

learning platform was introduced and online collaborative learning was conducted for three hours. The 

experimental group and control group completed the same task, with the same duration. The only difference was 

that the participants in the experimental group conducted online collaborative learning using the personalized 

intervention approach, whereas those in the control group used the conventional online collaborative learning 

approach without personalized intervention. After completing the collaborative learning task, all groups 

submitted their main ideas and solutions in a Word document, as the group product. In the third phase, a post-

questionnaire about cognitive load was completed for 10 minutes. Finally, a semi-structured focus group 

interview was conducted by two research assistants to understand participants’ perceptions of the personalized 

intervention approach. Six experimental groups were randomly selected and each group participated in a 30-
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minute interview in a lab. The interview outline included 10 questions about the personalized intervention 

approach. The sample interview question included “Do you think the personalized feedback and 

recommendations were helpful? Why?” The online collaborative learning task was as follows. 

 

With the rapid development of the Internet, college students were encouraged to do pioneering work to serve 

society. XiaoWang wants to establish a company for online programming education. The first step was to 

construct a network for the company. Please help XiaoWang to complete the following tasks: 

• How should the local network and wireless network be constructed, for the company and for each room? 

How should the connectivity of the network be tested? 

• One day, the local network and wireless network become disconnected. How can they be fixed? 

• To overcome fierce market competition, XiaoWang have to investigate the market and competitors. Please 

help XiaoWang to find and process information about online programming education, by writing a market 

research report. 

 

 

4.3. Instruments 
 

The research instruments included a pre-test and questionnaire about cognitive load. The pre-test aimed to 

examine whether the experimental group and control group had equivalent prior knowledge about computer 

networks. The pre-test consisted of 10 single-choice questions, four true-false questions, and three short answer 

questions with a total score of 100. The example items of the pre-test are “What is computer architecture?” and 

“Can you list the three applications of computer network?”. The pre-test was developed by the teacher with more 

than 10 years’ experience of teaching computer course. The pre-test was evaluated by the experienced teacher 

and a research assistant. The inter-rater reliability using kappa statistics was 0.83, indicating high consistency. 

This study did not adopt a post-test because collaborative learning performance was measured through the level 

of collaborative knowledge building and the group products. The cognitive load questionnaire was adapted from 

Hwang, Yang, and Wang (2013) and it included eight items with a Likert scale: three items that measured mental 

effort and five items that measured mental load. The reliability of the questionnaire was 0.91 (0.86 for mental 

load and 0.81 for mental effort). Example items of the cognitive load questionnaire are “The learning content in 

this learning activity was difficult for me” and “I need to put lots of effort into complet ing the learning tasks or 

achieving the learning objectives in this learning activity.” 

 

 

4.4. Data analysis method 
 

The data analysis methods include the IIS-map analysis method, content analysis method, and sequential analysis 

method. To analyze the level of collaborative knowledge building, this study adopted the IIS-map analysis 

method proposed by Zheng, Yang, and Huang (2012). This method includes three steps, namely drawing the 

target knowledge graph, coding the online discussion transcripts, and calculating the level of collaborative 

knowledge building. The collaborative knowledge building level was equal to the activation quantities of all 

nodes. Two researchers coded the discussion transcripts of 22 groups. The inter-rater reliability using kappa 

statistics was 0.86, indicating high consistency. SSMR was analyzed based on the coding scheme adapted from 

Zheng, Li, and Huang (2017), and the analysis unit was a single SSMR episode. Table 2 shows the coding 

scheme for SSMR. The inter-rater reliability using kappa statistics achieved 0.83, indicating high consistency. 

The lag sequence analysis method was adopted to analyze the SSMR behavioural transition. The GSEQ 5.1 

software developed by Quera, Bakeman, and Gnisci (2007) was employed to conduct behavioural sequence 

analysis. Moreover, group performance was evaluated, based on the scores of the group products. The 

assessment criteria were developed by the authors and are shown in Table 3. The inter-rater reliability using 

kappa statistics was 0.80, indicating high consistency. Finally, face-to-face interviews were recorded by audio 

and the accuracy of all of the interview data was verified by participants. Content analysis method was used by 

two research assistants to independently analyze the interview transcripts and group data into inductively 

categories. Then two assistants reviewed the content and discussed it to come to a consensus when they had 

conflicts. 
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Table 2. Coding scheme for socially shared metacognitive regulation 

First-level category Second-level category Examples 

Orienting goals (OG) Task understanding (TS) “The tasks require us to find solutions to setting up 

the local network and wireless network.” 

Setting goals (SG) “Our group need to complete the three subtasks 

together.” 

Making plans (MP) Making plans about how to 

reach the goals, including 

selecting strategies and 

setting timelines (MP) 

“We need to make a detailed plan about schedule, 

strategies, and role assignment.” 

Negotiating the division of 

labor (ND) 

“How can we assign roles?” 

Enacting strategies (ES) Advancing and explaining 

solutions (AE) 

“Let’s discuss how to test the connectivity of the 

network.” 

Coordinating conflicts (CO) “We have reached a face-saving compromise.” 

Monitoring and 

controlling (MC) 

Monitoring or controlling the 

whole group’s progress (MC) 

“How is our group progressing?” 

Claiming (partial) 

understanding or 

comprehension failure (CC) 

“We have not discovered how to fix the local 

network.” 

Detecting errors or checking 

plausibility (DC) 

“Our solution is not feasible at all.” 

Evaluating and 

reflecting (ER) 

Evaluating current solutions 

(EV) 

“The current solutions still need to be refined 

further.” 

Reflecting on the group’s 

goals and progress (RE) 

“Our group product is perfect and we have 

completed the task.”  

Adapting metacognition 

(AP)  

Making adaptations to goals, 

plans, or strategies (MA) 

“We have to change our strategies.” 

 

Table 3. Assessment criteria for group product 

Dimensions/Rating 16–20 15–11 6–10 1–5 

Correctness 

(20) 

Correct opinions and 

examples. 

Correct 

opinions, but 

inappropriate 

examples. 

Improper opinions 

or examples. 

Wrong opinions and 

wrong examples. 

Diversity 

(20) 

The solutions and 

explanations were 

comprehensive and 

diverse. 

The solutions 

and 

explanations 

were partly 

comprehensive 

and diverse. 

The solutions and 

explanations were 

not diverse.  

Solutions and 

explanations were 

lacking. 

Originality 

(20) 

The solutions and 

explanations were 

original and 

innovative. 

The solutions 

and 

explanations 

were partly 

original. 

The solutions and 

explanations lacked 

originality. 

The solutions and 

explanations were 

copied from the Internet. 

Completeness 

(20) 

The solutions and 

explanations were 

complete and 

coherent. 

The solutions 

and 

explanations 

were complete 

but not 

coherent. 

The solutions were 

almost complete, 

but the explanations 

were incomplete 

and incoherent. 

Both the solutions and 

explanations were 

incomplete. 

Format 

(20) 

The Word 

document was 

formatted perfectly 

regarding layout, 

style, background, 

color, fonts, type 

size, and row 

spacing. 

The Word 

document was 

formatted well 

in terms of 

layout, color, 

fonts, type size, 

and row 

spacing. 

The Word 

document was 

formatted well only 

in terms of fonts 

and type size. 

The Word document 

format was completely 

disordered. 
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5. Results 
 

5.1. Analysis of collaborative knowledge building 

 

This study adopted a one-way ANCOVA (analysis of covariance) to examine whether there were significant 

differences in collaborative knowledge building between the experimental and control groups. First, the findings 

of a Kolmogorov–Smirnov test revealed that all datasets were normally distributed (p > .05). Second, the 

assumption of homogeneity of regression was not violated (F = 0.01, p = .92). Therefore, the one-way ANCOVA 

could be performed, with the pre-test as the covariant variable to exclude the effects of pre-test on collaborative 

knowledge building, the learning approach as the independent variable, and collaborative knowledge building as 

the dependent variable. Table 4 shows the ANCOVA analysis results. The results revealed a significant 

difference in collaborative knowledge building between the experimental and control groups (F = 12.70, p = 

.002). Moreover, the mean score of the experimental group was higher than that of the control group. Therefore, 

the learners who learned with the personalized intervention approach had a higher level of collaborative 

knowledge building than those who learned with the conventional approach. The eta squared value η2 = .40 

indicated a large effect size (η2 > .138), according to Cohen (1988). Therefore, the personalized intervention 

approach had a beneficial effect in increasing the level of collaborative knowledge building. Figure 7 and Figure 

8 show the knowledge graphs of an experimental group and control group, respectively. The number besides the 

node denoted the activation quantity. It is very obvious that the experimental group co-constructed a graph 

containing more knowledge and relationships. 

 

Table 4. Summary of ANCOVA on collaborative knowledge building 

Group N Mean SD Adjusted mean SE F η2 

Experimental group 33 385.90 83.56 389.81 31.71 12.70** .40 

Control group 33 232.51 121.27 228.60 31.71   

Note. **p < .01. 
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Figure 7. The knowledge graph of an experimental group 
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Figure 8. The knowledge graph of a control group 

 

 

5.2. Analysis of group performance 

 

The study also investigated the impacts of the personalized approach on group performance. The scores for the 

group products were used to evaluate group performance. The results of a Kolmogorov–Smirnov test confirmed 

that all datasets were normally distributed (p > .05). The assumption of homogeneity of regression was not 

violated (F = 1.309, p = .268), meaning that the one-way ANCOVA could be performed. As shown in Table 5, 

there was a significant difference in group performance between the experimental and control groups (F = 62.24, 

p = .000). The eta squared value η2 = .766 indicates a large effect size (η2 > .138). Therefore, the learners who 

learned with the personalized intervention approach achieved a higher group performance than those who 

learned with the conventional approach. 

 

Table 5. Summary of ANCOVA on group performance 

Group N Mean SD Adjusted mean SE F η2 

Experimental group 33 85.00 4.09 84.90 2.06 62.24*** .766 

Control group 33 61.64 8.42 61.73 2.06   

Note. ***p < .001. 

 

 

5.3. Analysis of socially shared metacognitive regulation 

 

Table 6 shows the descriptive statistics results of SSMR behaviors of the experimental and control groups. The 

lag sequential analysis method was adopted to analyze the SSMR behavioral transitions. Table 7 shows the 

results for the experimental group. The vertical direction in Table 7 indicates the starting behaviors and the 

horizontal direction indicates the subsequent behaviors. The z-score is used to evaluate the possible behavioral 

sequence transitions. A z-score greater than 1.96 indicates that the behavioral sequence has a significant level 

(Bakeman & Quera, 2011). As shown in Table 7, there were six significant behavior sequences: OG→MP, 

MP→MP, MP→ES, ES→MC, ES→AP, and MC→ER. Figure 9 shows the SSMR behavioral transition diagram 

for the experimental group. In contrast, for the control group, there were only three behavior sequences with a 

significant level, namely MP→MP, ES→ES, and MC→ER. Table 8 shows the results of the control groups and 

Figure 10 shows the SSMR behavioral transition diagrams of the control groups. Therefore, the behavioral 

transitions of the experimental groups were more diverse than those of the control groups. As shown in Table 9, 
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there were three significant behavior sequences that only occurred in the experimental groups, namely MP→ES, 

ES→MC, and ES→AP. Therefore, enacting strategies, monitoring and controlling, and adapting metacognition 

were the crucial regulatory metacognitive behaviors for successful collaborative learning. 

 

Table 6. The descriptive statistics results of SSMR behaviors 

  OG MP ES MC ER AP 

Experimental group N 10 40 136 127 30 10 

Mean 0.91 3.64 12.36 11.55 2.73 0.91 

SD 1.14 2.11 7.58 7.21 1.95 1.04 

Control group N 5 41 77 110 14 0 

Mean 0.45 3.73 7 10 1.27 0 

SD 0.82 2.83 5.46 6.96 1.19 0 

 

Table 7. Adjusted residuals of the experimental group 

Starting behavior Subsequent behavior 

 OG MP ES MC ER AP 

Orientating goals (OG) 1.63 2.21* -1.95 0.23 0.14 -0.56 

Making plans (MP) -1.04 2.36* 2.09* -1.96 -1.49 -1.17 

Enacting strategies (ES) -0.08 0.06 -2.92 2.39* -0.26 2.05* 

Monitoring and controlling (MC) 0.84 -1.48 1.63 -1.63 2.08* -1.74 

Evaluating and reflecting (ER) -0.82 -1.04 0.28 1.06 -0.92 0.29 

Adapting metacognition (AP) -0.50 -1.05 1.33 -0.44 -1.00 1.35 

Note. *p < .05. 
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Figure 9. SSMR behavioural transition diagram of the experimental group 

 

Table 8. Adjusted residuals of the control group 

Starting behavior Subsequent behavior 

 OG MP ES MC ER AP 

Orientating goals (OG) -0.30 0.36 0.36 -0.24 -0.57 0.00 

Making plans (MP) 0.41 2.98* -1.24 -0.20 -1.77 0.00 

Enacting strategies (ES) -1.40 0.36 2.04* -1.37 -0.92 0.00 

Monitoring and controlling(MC) 1.22 -2.34 -0.72 1.04 2.06* 0.00 

Evaluating and reflecting (ER) -0.35 -1.10 -1.05 1.41 0.95 0.00 

Adapting metacognition(AP) 0.00 0.00 0.00 0.00 0.00 0.00 

Note. *p < .05. 

 

Table 9. Significant behaviour sequences that only occurred in the experimental group 

Starting behavior Subsequent behavior 

 OG MP ES MC ER AP 

Orientating goals (OG)      

Making plans (MP) MP→ES   

Enacting strategies (ES)   ES→MC  ES→AP 

Monitoring and controlling (MC)  

Evaluating and reflecting (ER)    

Adapting metacognition (AP)      
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Figure 10. SSMR behavioural transition diagram of the control group 

 

 

5.4. Cognitive load 

 

The independent-samples t test was used to examine the difference in cognitive load. As shown in Table 10, 

there was no significant difference in cognitive load between the experimental and control groups (t = 1.50, p 

= .13). Furthermore, there were no significant differences in mental load (t = 1.22, p = .22) and mental effort (t = 

0.54, p = .58) between the experimental and control groups. Therefore, all of the participants had similar 

perceptions concerning the collaborative learning tasks. The proposed personalized approach did not increase 

cognitive load on the participants of the experimental group. 

 
Table 10. Independent sample t-test results of cognitive load 

Dimensions Group N Mean SD t 

Cognitive load Experimental group 33 4.50 1.33 1.50 

 Control group 33 4.04 1.11 

Mental load Experimental group 33 4.61 1.35 1.22 

 Control group 33 4.23 1.13  

Mental efforts Experimental group 33 3.20 0.57 0.54 

 Control group 33 3.27 0.47  

 

 

5.5. Interview results 

 

To gain a better understanding of participants’ perceptions of the personalized intervention approach, six 

experimental groups were randomly selected for interview. The interview data were sorted into three categories. 

First, all of the interviewees believed that the personalized intervention approach was very helpful for increasing 

the level of collaborative knowledge building and improving group products. The main reason was that the 

personalized intervention approach could automatically classify discussion transcripts and provide personalized 

service based on the analysis results. Learners could keep track of the status and progress of collaborative 

learning by checking the analysis results. For example, one interviewee stated, “When our group check the latest 

progress and find that there is many off-topic information, we immediately go back to the collaborative learning 

task and build knowledge together.” Another interviewee stated, “The feedback and suggestions are very helpful. 

The suggestions for learning resources and guiding activities contributed to our co-constructing knowledge 

together. We really appreciate it.” 

 

Second, all of the interviewees believed that the personalized intervention approach contributed to SSMR. The 

analysis results on interactive behaviors and metacognition informed learners in the experimental groups to 

regulate themselves. For example, one interviewee told us, “The analysis results on metacognition show that 

there is little information about reflection and evaluation. The system reminds us to reflect further on the 

collaborative learning process and the group product.” Another interviewee said, “The metacognition 

classification results are helpful for SSMR. When our group finds the metacognition status of each group 

member, we can regulate ourselves immediately, based on the results.” 

 

Third, all of the interviewees believed that the personalized intervention approach did not increase cognitive 

load. For example, one interviewee said, “Our group members like to check the classification results to learn 

more about the collaborative learning progress. We really need it to regulate ourselves. There is no cognitive 

load.” Another interviewee stated, “The personalized group feedback and suggestions are really necessary and 

we like to check them when we need. There is no cognitive load for us.” 

 

 



188 

6. Discussion 
 

This study examined the effects of the personalized intervention approach on collaborative knowledge building, 

group performance, SSMR, and cognitive load in CSCL. The personalized intervention approach was 

implemented automatically, based on the classification results performed by BERT. The results of the quasi-

experiment indicated that the proposed personalized intervention approach significantly improved collaborative 

knowledge building, group performance, and SSMR behaviours. In addition, it did not increase learners’ 

cognitive load.  

 

 

6.1. Effects on collaborative knowledge building and group performance 

 

The results of the ANCOVA analysis revealed that learners in the experimental groups outperformed those of the 

control groups in terms of collaborative knowledge building and group performance. This finding indicates that 

the personalized intervention approach can efficiently increase the level of collaborative knowledge building and 

improve the group products. There are several possible explanations for the findings. First, the personalized 

intervention approach performed the automatic classification of online interactive behaviours, which provided 

extra information about the progress of online collaborative learning. The classification of online interactive 

behaviours (showing the numbers of knowledge building, regulation, support, asking questions, and off-topic 

information) stimulated learners to co-construct knowledge in depth. When learners found that there was off-

topic information, they would immediately return to collaborative knowledge building and complete the group 

products. In addition, the statistical results on social interaction also quantified the contribution of each group 

member, thereby increasing the group awareness of the members’ status. As Yilmaz and Yilmaz (2020) 

concluded, increasing group awareness contributed to improving knowledge building. 

 

Second, the personalized intervention approach provided personalized group feedback and explanations for each 

group. The formative feedback and explanations about online interactive behaviours and metacognition helped 

learners to gain a better understanding of the collaborative learning progress and problems. As Resendes, 

Scardamalia, Bereiter, Chen, and Halewood (2015) suggested, formative feedback promoted discussion moves to 

advance knowledge building. Furthermore, the support of the personalized intervention approach increased the 

sense of collective cognitive responsibility to ensure that the collaborative knowledge building and group 

products improved (Zhang, Scardamalia, Reeve, & Messina, 2009). Third, the personalized intervention 

approach provided individualized recommendations for each group. These suggestions, which included various 

types of learning resources, cases, support strategies, and guiding activities, improved the collaborative 

knowledge building and group products. 

 

 

6.2. Effects on socially shared metacognitive regulation 

 

This study found that the personalized intervention approach promoted SSMR behaviours. Learners who used 

the personalized intervention approach demonstrated more SSMR behaviours than those in the control groups. In 

addition, the study found that enacting strategies, monitoring and controlling, and adapting metacognition were 

the critical behaviours for promoting SSMR. There are several possible explanations for these findings. First, the 

metacognition classification results showed the numbers of planning, monitoring, and reflection and evaluation 

behaviours during collaborative learning, thereby directly promoting SSMR at the group level. Second, the 

statistical analysis of social interaction and the classification of interactive behaviours also contributed to SSMR. 

For example, when group members found that there was little interaction, they would increase interaction with 

peers. Third, personalized group feedback and recommendation further facilitated group metacognitive 

regulation and behavioural transition. This finding is consistent with that of De Backer, Van Keer, and Valcke 

(2016), who believed that feedback promoted groups’ metacognitive regulation. 

 

 

6.3. Effects on cognitive load 

 

The study found that the proposed personalized intervention approach did not increase cognitive load for learners 

in the experimental group. Learners from the experimental group did not report feeling stressed when the 

personalized intervention was provided to support collaborative learning. The reason may be that learners 

checked the latest progress and personalized intervention only when they needed. Furthermore, the personalized 

intervention was considered very helpful for completing collaborative learning tasks. As Paas, Renkl, and 

Sweller (2003) revealed that learners’ cognitive load can be controlled and reduced by using an effective 
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instructional design. In addition, learners in the two groups completed the same collaborative learning task, with 

the same duration. Therefore, there was no significant difference in cognitive load between the experimental and 

control groups. 

 

 

6.4. Implications 

 

The rapid development of AI enables real-time analysis and personalized intervention to improve the 

performance of collaborative learning. The current study adopted a DNN model to automatically classify online 

collaborative learning transcripts and provide personalized intervention for each group. This study has several 

implications for teachers, developers, and practitioners. 

 

First, teachers should provide personalized intervention to improve the performance of collaborative learning. 

With the aid of AI technology, data generated in online collaborative learning can immediately be analyzed 

automatically to provide personalized intervention. Types of intervention include supporting strategies, guiding 

activities, and recommended learning sources. Teachers or practitioners can also evaluate the impacts of 

personalized intervention on learning performance and perceptions. However, it should be noted that 

personalized intervention needs to be elaborately designed to achieve the desired effects (Liu et al., 2017). 

 

Second, teachers and practitioners should pay attention to SSMR to achieve productive collaborative learning. It 

has been found that SSMR is positively related to learning performance (De Backer, Van Keer, & Valcke, 2020). 

Because learners may have difficulties with SSMR, teachers and practitioners can provide necessary training 

about SSMR skills before collaborative learning. For example, to improve SSMR, training should be provided in 

monitoring and controlling collaborative learning processes, as well as adapting metacognition. 

 

Third, researchers and developers need to focus on the latest AI techniques to improve the accuracy of DNN 

models. For example, more work is required on enhancing the performance of BERT. Increasing training 

datasets also contributes to improving the accuracy of DNN models (Hestness et al., 2017). Fine-tuning 

strategies can be adopted to obtain optimized models that achieve better performance. In addition, developers 

should also develop new DNN models to be applied in different domains. 

 

 

7. Conclusions 
 

This study examined the effects of personalized intervention on collaborative knowledge building, group 

performance, SSMR, and cognitive load. The personalized intervention approach included automatic analysis of 

interactive behaviors and metacognition, providing personalized group feedback, and providing personalized 

recommendations. The findings revealed that the proposed personalized intervention approach significantly 

improved collaborative knowledge building, group products, and SSMR. The study highlighted the contributions 

of DNNs to providing real-time analysis and personalized intervention in CSCL. The main contribution of the 

study was to adopt a DNN model to implement personalized intervention in CSCL. The study broadened the 

understanding of how teachers and practitioners can be guided to provide personalized intervention in CSCL. 

 

The study had several limitations and its results should be generalized with caution. First, the sample size was 

not large. Future studies will increase the sample size and datasets to improve the accuracy of the model and 

validate the proposed approach to personalized intervention. Second, the duration of the experiment was short. 

Future studies will conduct long-term experiments to provide powerful evidence about the personalized 

intervention approach. Third, the study examined the effects of the personalized intervention approach only on 

collaborative knowledge building, group performance, and SSMR. Future studies will examine the effects on 

other variables, such as collective efficacy, problem solving skills, and higher-order thinking skills. 
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