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ABSTRACT: Massive open online courses (MOOCs) provide numerous open-access learning resources and 

allow for self-directed learning. The application of big data and artificial intelligence (AI) in MOOCs help 

comprehend raw educational data and enrich the learning process for students and instructors. Thus, we created 

two deep neural network models. The first model predicts learning outcomes on the basis of learning behaviors 

observed when students watch videos. The second is a novel exercise-based model that predicts if a student will 

correctly answer examination questions on relevant concepts. The study data were collected from two courses 

conducted on the National Tsing Hua University’s MOOCs platform. The first model accurately evaluated 

student performance on the basis of their learning behaviors, and the second model efficiently predicted student 

performance according to how they answered the exercise questions. In conclusion, our AI system remedies the 

present-day inability of MOOCs to evaluate student performance. Instructors can use the systems to identify 

poor-performing students and offer them more assistance on a timely basis. 
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1. Introduction 
 

Massive open online courses (MOOCs), an open-access educational resource available to online learners 

worldwide, represent a new approach to learning. MOOCs provide not only various study materials and 

resources but also aid students in self-directed learning. With increasing enrollment in MOOCs, a large amount 

of learning data has become available for collection and analysis. By harnessing data science, analytics 

approaches to learning can leverage educational data and help students and instructors enrich their learning 

processes (Vieira, Parsons, & Byrd, 2018). 

 

Many researchers have analyzed MOOCs data by incorporating big data and artificial intelligence (AI) in their 

research design. Big data and AI have gained prominence in various fields, including machine learning and data 

science. Machine learning algorithms are more effective when using larger datasets, and the combination of 

machine learning and big data has made impressive breakthroughs in data science (Ghahramani, 2015).  

 

In recent times, deep neural networks, an important branch of machine learning, has been used successfully in 

many AI applications (Su, Chou, Chu, & Yang, 2019; Su, Ni, Li, Lee, & Lin, 2020; Su, Ding, & Chen, 2021). 

Several researchers have constructed multilayered models that capture more complex features, particularly how 

online learners learn (Hwang, Sung, Chang, & Huang, 2020; Kastrati, Imran, & Kurti, 2019; Li & Zhou, 2018; 

Su & Lai, 2021; Yang, Brinton, Joe-Wong, & Chiang, 2017). Boulay (2016), for instance, specified that AI 

techniques help practitioners better understand learning and pedagogical trends, and related systems help 

students acquire new skills and grasp new concepts. Therefore, the application of AI to MOOCs has drawn 

considerable attention in big data analytics. The NMC Horizon Report noted that AI will strengthen the online 

teaching model, which facilitates adaptive learning and research, and make student–teacher interactions more 

intuitive and frequent (Adams, Cummins, Davis, Freeman, Hall, & Ananthanarayanan, 2017). Fauvel et al. 

(2018) designed an AI tool to analyze students’ learning effectiveness by collecting learning behavior data with 

the objective of helping MOOC learners better understand concepts and MOOC instructors deliver more 

effective courses and offer higher-quality educational tools. AI tools are mainly used to bridge the gap between 

online learning and physical classes and enable students to achieve their learning goals. Therefore, it is important 

to personalize MOOC services to students’ learning adaptability, habits, and behaviors (Tekin, Braun, & Schaar, 

2015). 

 

MOOCs transcend spatial and temporal constraints and have popularized the concept of open education. There is 

a large quantity of structured and unstructured learning data that are based on learner behavior observations and 

diverse test questions. The data include personal information (e.g., gender, age, education level, and disciplinary 

background) and responses to test questions (e.g., number of candidates, number of graduates, number of test 
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questions, responses to test questions, and evaluation goals). Many scholars have proposed that data analysis can 

be used to improve a teacher’s course and make it more adaptable (Ndukwe & Daniel, 2020; Er, Gomez-

Sanchez, Dimitriadis, Bote-Lorenzo, Asensio-Perez, & Alvarez-Alvare, 2019; Lee, 2019; Lu, Huang, Huang, & 

Yang, 2017; Ruipérez-Valiente, Munoz-Merino, Diaz, Ruiz, & Kloos, 2017). In MOOCs, learners are free to 

study the topic of their choice irrespective of time and place. In addition, they do not need to follow the 

instructor’s intended course sequence (Matt, 2018). While the self-regulated learning structure of MOOCs offers 

considerable flexibility and a wealth of valuable resources, many learners do not complete the courses because of 

the pressure-free learning environment (Azevedo & Cromley, 2004; Bol & Garner, 2011; Peverly, Brobst, 

Graham, & Shaw, 2003). MOOCs use self-directed learning as their development model (Li, 2019), and thus, 

learners must set learning goals and use learning strategies commensurate with their aptitude and background 

knowledge to master the course content. Through videos, exercises, forums, and other interactive functions, 

learners must develop appropriate self-regulated learning (Lan, Hou, Qi, & Mattheos, 2019; Matt, 2018). 

Consequently, to help students achieve classroom success, many researchers have proposed assessment systems 

that can not only improve students’ performance and self-regulation abilities (Lu, Huang, Huang, Lin, Ogata, & 

Yang, 2018) but also identify scope for improvement in course designs on the basis of students’ learning 

behaviors. 

 

There is growing literature on the application of big data in education. Processing large quantities of learning 

data can elucidate the relationship between learning behaviors and learning effectiveness, which can help 

educators forecast learning outcomes (Hwang, Chu, & Yin, 2017). The conceptual framework underlying 

learning analytics can be used to analyze course characteristics, assess student performance, and predict learning 

progress. According to Lu et al. (2018), learning analytics help educators save time, which can be used to refine 

their teaching expertise and identify at-risk students at an earlier stage. However, MOOCs have fundamental 

problems. The most well-known being the low completion rate and the lack of learning guidelines (Freitas, 

Morgan, & Gibson, 2015). There are varying factors attributable to low completion rates. However, studies have 

reported that most MOOC learners are unprepared for the extensive course content and isolated learning 

environment (Kim, Olfman, Ryan, & Eryilmaz, 2014). 

 

In order to address these issues, this study aimed to develop an AI-based system that helps teachers better 

understand their students’ learning performance. The system has two functions. First, it analyzes students’ 

learning behaviors to evaluate their learning performance at a given time. Second, it uses a novel exercise-based 

model to predict if students will correctly answer examination questions on relevant concepts. We first collected 

data on the video-watching behavior of participating MOOC students and the frequency at which students 

watched the videos. These data were subsequently analyzed and used to predict students’ scores. The scores 

calculated using our formulated neural networks can be used to identify students with learning difficulties, the 

key practical implication of this feature. Previous studies have indicated the following challenges in developing 

intelligent tutoring systems: techniques that simulate the intelligence of human experts and the need for human 

tutors’ knowledge and experience to make judgments and decisions using the best available evidence to help 

solve learners’ problems and improve their learning ability (Hwang, Xie, Wah, & Gašević, 2020). Second, we 

collected students’ answers to exercises and data on their answering process. Using the data, our system 

predicted whether a student would answer an examination question correctly.  

 

The system is based on deep learning, a promising technology applied in the field of education. While there has 

been growing interest in AI-based education research since 2001, less than 5% of such studies focus on AIED. 

However, considering its rapid advancement, there is much potential in the application of deep learning in 

education (Chen, Xie, & Hwang, 2020). Therefore, our proposed system could exemplify the development of a 

deep learning system to predict student performance. 

 

Finally, most software tools based on AI technologies used for educational purposes are designed to learn 

languages or mathematics (Chen, Xie, Zou, & Hwang, 2020). The data used for this study are collected from two 

MOOCs courses: Introduction to IoT (where IoT refers to the Internet of Things) and Calculus I. Both are 

introductory courses. The former is for computer science undergraduates from the National Tsing Hua University 

(NTHU) and covers related techniques. Therefore, in light of future research, the system proposed in this study 

can be used for programming learning purposes, an arguably important advance in artificial intelligence in 

education research. 

 

The present AI-based system used NTHU’s MOOCs platform as an experimental site. Its objective is to provide 

teachers with accurate evaluations to identify students with learning difficulties. Furthermore, the predicted 

results for students’ examination answers could help teachers understand students’ learning experience without 

the need to conduct additional exams. Consequently, teachers may be able to better guide their students and 

increase their motivation to learn. This study was based on the following research questions: 
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RQ1. In a MOOC learning environment, can video-watching data that reflect learning behaviors be used to 

evaluate learning outcomes in addition to online assessment scores (e.g., quiz or examination scores)? 

RQ2. In addition to the proportion of correctly answered questions, can deep learning be applied to the 

aforementioned video-watching data to evaluate if a student has mastered the course content and understood 

related concepts? 

 

 

2. Literature review 

 
2.1 Data analysis and enhancement of learning effectiveness  

 

AI refers to the simulation of human intelligence in machines such that their judgments and decisions exhibit the 

characteristics of a human mind (Akerkar, 2014; Su, Ding, & Chen, 2021; Su, Suen, & Hung, 2021). In recent 

years, research on artificial intelligence in education (AIED) has flourished with the increasing sophistication of 

data analytics (Kay & Kummerfeld, 2019; Schwendimann, 2017; Su & Lai, 2021; Su & Wu, 2021). The 

literature has also witnessed the development of new research methods and subfields, such as educational data 

mining and learning analytics, where scholars gather learner data from online platforms to analyze learning 

processes (Daghestani, Ibrahim, AI-Towirgi, & Salman, 2020; Alexandron, Ruipérez-Valiente, Chen, Muñoz-

Merino, & Pritchard, 2017; Romero & Ventura, 2017). 

 

The proliferation of data analytics, especially big data analysis, in education has paved the way for a new 

teaching approach, wherein student activities and progress are tracked to improve learning outcomes. In addition, 

students can track their learning progress for better self-directed learning (Alonso-Mencia et al., 2019; Kavitha & 

Raj, 2017). Hwang et al. (2020) developed a fuzzy expert system-based adaptive learning approach while 

accounting for both affective and cognitive factors. The experiment results indicated that the learning system 

could enhance students’ learning achievements and reduce their learning anxiety. 

  

Advances in learning data analytics have led to the creation of an accommodating online learning environment 

that helps students achieve their learning goals, especially in higher education distance teaching and teacher 

training courses. Using such technologies, teachers can track learning behaviors and evaluate students’ learning 

effectiveness across several dimensions (Meier, Xu, Atan, & Schaar, 2016). 

 

 
2.2. Evaluation of learning performance based on student behavior 
 

Learning behaviors are learned actions commonly used to assess students’ learning and performance. Examining 

students’ learning behaviors not only gives teachers insight into students’ learning situations, but also ensures the 

feasibility of teaching materials. Hsu et al. (2021) developed an instructional tool for AI education and used 

videos and screenshots to record learning behaviors. Their study revealed meaningful behavioral patterns when 

students learned the application of AI. 

 

Students’ learning behaviors on MOOCs are also an important factor in learning assessments. MOOCs, however, 

commonly report low completion and high dropout rates (Sun, Ni, Zhao, Shen, & Wang, 2019). Numerous 

studies have proposed methods to predict students’ success or failure in courses (Er et al., 2019; Lu et al., 2018). 

One such method uses a logistic regression model for prediction. Lee (2018) applied this method to analyze the 

behavior of students engaged in uninterrupted video watching and examined data drawn from the students’ 

learning logs. Students reported interrupted learning if they did not watch the course video for two consecutive 

days. The author estimated the frequency and duration of uninterrupted learning actions from the learning log 

data and inputted the data into the prediction model. Lee then defined three thresholds for continual learning (10, 

30, and 60 minutes) and compared the effect of uninterrupted learning across the thresholds. The 60-minute 

threshold occupied the largest area under the precision-recall curve, indicating that the threshold was the most 

useful in predicting student success in obtaining a course certificate. In other words, students are more likely to 

obtain a course certificate if they participated in more learning activities and engaged in learning for a longer 

duration. 

 

Guo, Kim, and Rubin (2014) proposed several features that educational video production should incorporate to 

increase engagement, which was measured by the duration of video watching and whether students attempted a 

post-video exercise. Using simple statistical tools, the authors found that shorter videos, in addition to other 

video production decisions, led to greater engagement. These findings can be useful for MOOC instructors. 
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Kim et al. (2014) revealed that video length was strongly and negatively correlated with engagement; that is, 

learners were less likely to finish watching a longer video. The authors also demonstrated that students were 

more likely to view the entire video when they watched it for the first time rather than when they did so more 

than once. Using binning and kernel-based smoothing, the authors then produced second-by-second plots of 

peaks in video interactions (defined by play, pause, and skip). The plots revealed students’ learning behaviors 

when they watched a video. Each peak was manually classified into five categories to explain the underlying 

cause of the peak. Their results elucidated how students interact and learn, and practitioners can use these 

findings to improve video interfaces for learning. 

 

Sun et al. (2019) proposed a gated recurrent unit-recurrent neural network (GRU-RNN) model to construct a 

dropout prediction model. The model is based on an RNN with a URL embedding layer. The authors used their 

model to compare student performance before and after course entry and to determine the number of days 

students did not spend on learning. They then analyzed different approaches to learning, such as answering 

exercise questions, interacting on forums, and taking examinations. Finally, the authors examined students’ 

learning habits through their sequence of learning behaviors to predict learning performance. 

 

 

2.3. Measurement of learner proficiency in MOOCs 

 

Traditional learning assessments offer a judgment score or standard reference. However, students differ in their 

learning ability and speed. Difficult test questions poorly reflect the comprehension level of students with low 

learning ability. To address this issue, researchers formulated test response theory, which became increasingly 

popular in education research and practice. According to test response theory, students receive questions on the 

basis of their response to the previous ones, and thus, the difficulty level of the test is tailored to a student’s 

ability. However, the theory does not address ways to dispel student misconceptions or to diagnose learning 

disabilities (Liu, Lin, & Tsai, 2009). There are several methods to conduct a diagnosis. Interviews are the most 

common qualitative method, and test response theory is the most frequently used quantitative method. With the 

growing application of AI technology, including neural networks, diagnostic testing is an emerging subfield in 

the testing industry. Chu (2020) envisioned cognitive diagnostic testing that is based on cognitive science theory 

as a crucial future trend. The author designed a cognitive diagnostic test and proposed a question-response model 

to verify if cognitive science theory yields valid evaluations for student ability (Chu, Li, & Yu, 2020). Their 

method helped improve learning data analytics, thus allowing MOOC teachers to better evaluate student 

performance and track learning behaviors across various learning dimensions. 

 

The MOOC literature has widely investigated online assessments and learner participation. DeBoer, Ho, Stump, 

and Breslow (2014) analyzed the concept of participation and desirable metrics for learning success and 

participation quality. However, learners might sign up for a course and not complete the assessments. Admiraal, 

Huisman, and Van de Ven (2014) explored the assessment quality of MOOCs. MOOCs entail a dynamic 

learning process: learners engage in a series of actions comprising perception, learning, thinking, and problem-

solving. Thus, final scores are an inadequate indicator of learner performance (Shepard, 2001). Teachers must 

observe students’ learning behaviors during a course since learning is a process rather than an outcome. The 

aforementioned conclusions emphasize the need for alternative assessment methods in MOOCs. 

 

 

2.4. Prediction of learning performance using exercises 

 

Moreno-Marcos, Pong, Muñoz-Merino, and Delgado-Kloos (2020) presented a method to predict students’ 

assignment, examination, and final grades on the basis of their learning status, performance in discussion forums, 

video-watching behaviors, answers to practice questions, and previous assignment scores. The authors found that 

previous assignment scores and average answer scores were highly predictive of the aforementioned three 

grades, whereas student performance in discussion forums was only slightly predictive. Because some courses 

provide videos without exercises, the authors used student behavioral data such as click counts as a model 

feature but noted no substantial change in performance. 

 

Learning styles in MOOCs can be categorized by performance in course assessments (Alario-Hoyos, Pérez-

Sanagustín, Delgado-Kloos, Parada, & Muñoz-Organero, 2014). Alario-Hoyos et al. (2014) used learner 

performance in a sequence of course activities (including videos and exercises) to cluster learners into three 

broad categories: lurkers, participants who did not complete a course, and participants who completed the course. 

Although the authors did not detail their clustering method, it appeared to be based on simple statistics. 
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Ashenafi, Riccardi, and Ronchetti (2015) proposed a method to predict the final examination results of students 

in two undergraduate programming courses (Informatica Generale I (IG1) and Programmazione II (PR2)) at the 

University of Trento, Italy. Throughout the courses, students participated in a set of peer-based online homework 

activities with three main tasks: ask a question, answer a question, and rate answers. A total of 14 types of data 

were captured before they were used as input features in a prediction model with logistic regression. The 

prediction model outperformed its counterparts by a root mean square error of 2.93 for one course and 3.44 for 

the other. 

 

Huang, Chen, Tzeng, and Lee (2018) designed a concept assessment system with a knowledge map using deep 

learning. The authors presented each week’s knowledge topology as a knowledge map. They collected data on 

the difficulty level of exercises and student behaviors when watching videos and used the data to predict 

students’ comprehension of the content in a given week’s course. The prediction model was based on a deep 

learning method. 

 

Li, Xie, and Wang (2016) proposed a model to predict test scores. Drawing on several educational theories, the 

authors predicted quiz grades using 15 features such as student age, gender, education level, registration time, 

number of videos watched, number of exercises, and related actions. However, the features were not significantly 

associated with examination scores, and thus, could not be used in the prediction model. 

 

 

2.5. Lack of evaluation mechanisms in MOOCs 

 

Student performance has been traditionally evaluated using standardized tests, and thus, there is a need for 

learning tools that evaluate learning investments in hybrid, remote, or virtual learning environments. MOOCs 

have altered global learning trends, although they face many challenges in terms of their long-term development 

and learning models, including low completion rates (5-10% on average) and high learning loss rates (Sun, Ni, 

Zhao, Shen, & Wang, 2019). Evaluating learner performance in MOOCs is inherently difficult because students 

cannot be monitored in real-time, limiting MOOCs’ ability to be impartial or provide reliable proof of 

coursework (Bady, 2013). Moreover, MOOCs have numerous learners, and teachers cannot interact with every 

student. In such cases, students must rely on active interactions with other online learners to obtain learning 

feedback and practice. Importantly, students must be self-directed learners (Crosslin, 2018). Previous evaluation 

methods for online learners can serve as a guide for educators; however, MOOC educators are seeking to 

develop online metrics for large-scale data collection for students of different levels and ages. Table 1 

summarizes missing components in MOOC assessments, factors contributing to these gaps, and how these gaps 

can be bridged with our deep learning system. 
   

Table 1. Lack of assessment in MOOCs: Reasons and proposed solutions 

Learning problem Reason Solution 

Assessment is potentially 

unfair. 

Students cannot be monitored in real-

time, and there is scope to cheat on 

tests. 

Our system performs a big data 

analysis to provide MOOC 

educators with an evaluation system 

that supplements examinations. 

Examinations do not provide 

clear and objective 

evaluations. 

MOOC learners are diverse, and 

some may have inadequate 

background knowledge for a 

course. 

Our system uses neural networks to 

estimate objective and credible 

evaluation scores using large 

datasets on learning behaviors and 

judgments. 

Effective learning feedback is 

lacking. 

Different learners absorb different 

content. 

Our system draws on learning 

behaviors to predict the proportion 

of questions students will answer 

correctly. These predictions will 

help teachers understand if students 

have grasped related concepts. 

 

 

3. Methods 

 
This section describes the use of data on video-watching behaviors and answers in exercises to predict students’ 

learning performance in MOOCs. 
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3.1. Course information and collection of data on learning behaviors 

 

Students from two MOOCs courses participated in this study. Table 2 details the two courses. Students must 

obtain a minimum score of 60 to complete either course.  

 

The introductory course for IoT is for computer science undergraduates at NTHU and covers techniques used in 

IoT. Students are expected to spend three hours per week watching online videos and to participate in offline 

laboratory sessions during which they can conduct experiments. Students can complete exercises as practice and 

discuss the course content with their peers on the online platform. 

 

The 12-week comprehensive introduction to calculus is a prerequisite for all first-year students and must be 

completed during the summer vacation. Students are expected to spend three hours per week watching videos 

and to complete relevant exercises.  

 

Table 2. Course information 

 Introduction to IoT Calculus I 

Duration March 2–June 29, 2020 May 1–August 31, 2020 

Number of students 255 1,062 

Number of videos 

Number of weeks 

87 

5 

144 

12 

Average video time 525 792 

Number of exercises 71 143 

Number of quizzes  1 3 

Number of questions per quiz 50 20 

Quizzes interval time (in weeks) 5 4 

Course qualification No High school students only 

Fee Free Paid 

 

Videos constitute the primary teaching method in most MOOCs. For this study, we collected data on video 

playback actions, such as play, pause, search, and adjust playback speed, on the YouTube application 

programming interface (API) and then stored the data on the MongoDB database (Table 3). In addition, we 

collected data on each user’s answers for all exercises (Table 4). If students navigated to the exercise page but 

did not answer the exercise questions, we coded student responses to the exercise as “no.” The “timeCost” 

feature is the duration students took to answer a question. For example, if a student spent 20 seconds answering a 

question, the timeCost value for the question was 20. 

 

Table 3. Student video activity schema 

 Description Example 

userId Student ID 2,556 

courseId Course ID 10900MATH0001 

chapterId Chapter ID 10900MATH0001ch79 

videoId Video ID -RHQ75vrT3Q  

Action Student action when recording Playing 

currentTime Video time when recording  29.57483  

playRate Video play rate when recording 1.25 

Volume Video volume when recording 100 

update_at Recording time  2020-05-20T15:48:03 

 

Table 4. Student exercise activity schema 

 Description Example 

userId Student ID 2,556 

courseId Course ID 10900MATH0001 

chapterId Chapter ID 10900MATH0001ch79 

exerId Exercise ID 10900MATH0001ch79e1 

score Exercise answer score 0.6 

timeCost Time cost on exercise 15 

userAns User answer  [1, 3] 

correctAns Correct answer  [1, 2, 3]  

update_at Recording time  2020-05-15T09:33:35 
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3.2. Learning variables: Video-watching frequency and duration 

 

This subsection presents the definition of the variables used in this study: frequency and duration of video 

watching (Table 5). The variables are associated with a given day: on such a day, students primarily learned by 

watching videos. The average duration of a video is 10–15 minutes. We considered students to have engaged in 

learning if they watched a video for more than 5 minutes. Figure 1 is an example of a student’s video-watching 

log. 

 

 
Figure 1. Student video-watching log  

 

Table 5. Video-watching features 

Features Description 

videoFinishRate Proportion of videos finished 

videoSpendTime Time spent watching videos/total time of all videos 

Play Mean of playing in watching videos per week 

gapMean  Mean of days not spent on learning per week 

gapStd Standard deviation of gapMean 

regDay Number of days per week spent on learning 

weekBlockNumMean  Mean number of learning blocks per week 

weekBlockNumStd 

weekBlockTimeMean 

dayBlockNumMean 

dayBlockNumStd 

dayBlockTimeMean 

15Min 

30Min 

45Min 

weekNum 

Standard deviation of weekBlockNumMean 

Mean time of learning blocks per week 

Mean number of learning blocks per learning day 

Standard deviation of dayBlockNumMean 

Mean time of learning blocks per learning day 

Mean number of learning blocks >15 minutes/week 

Mean number of learning blocks >30 minutes/week 

Mean number of learning blocks >45 minutes/week 

Weeks since course started 

 

 

3.2.1. Video-watching behavior 

 

In addition, we defined variables for each student that captured their behaviors when watching a video. The 

variables were the proportion of course videos a student finished watching and that of total video playback time. 

The second variable was calculated as 1 – (a / b), where a is the total playback time for parts of all videos a 

student did not watch and b is total playback time for all course videos. 
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3.2.2. Learning gap 

 

A learning gap refers to the number of days a student did not spend on learning and was used to indicate a 

student’s learning pace. 

 

 

3.2.3. Uninterrupted learning 

 

A learning block constitutes uninterrupted periods of learning. We estimated the number of learning blocks for 

each student and the duration of the learning blocks per day or week. We set three time thresholds as per the 

length of the videos. 

 

 

3.2.4. Learning regularity 

 

We determined whether a student was learning regularly. To denote such regularity, we first recorded if a student 

had a dedicated learning day per week throughout the semester. We then aggregated the total number of such 

days. However, we also found some students dedicating learning days closer to the examination rather than 

throughout the semester. In other words, they “crammed” their learning, and such students were given the lowest 

regularity value (−1). 

 

 

3.3. Learning variable: Answers to exercise questions 

 

We recorded and analyzed each student’s answer to all exercise questions and extracted eight features (Table 6). 

 

Table 6. Exercise features 

Features Description Example 

Exercise type Exercise type (single, multiple, fill in the blanks) Multiple 

Correct rate Percentage of questions answered correctly 0.1 

Answer count Number of attempts before student answers correctly 3 

Time cost  Time taken to complete exercise  60 

Pre-answer review Whether student watched a related video before answering 

correctly the first time 

False 

Post-answer review Whether student watched a related video after answering 

correctly the first time 

True 

Answering process  Type of question-processing style (type 1–6) 5 

Correct count Number of questions answered correctly 0 

 

 

3.3.1. Rate of correctly answered questions 

 

The rate of correctly answered questions indicated the difficulty level of an exercise. We use this indicator 

because the difficulty levels of exercises are not always defined by the test creator, and not all students have 

similar learning abilities. A higher number of correctly answered questions denotes greater student proficiency. 

 

 

3.3.2. Number of attempts before correctly answering a question the first time 

 

The number of attempts before correctly answering a question for the first time indicates the difficultly level of 

an exercise, where a greater number indicates a higher difficulty level. However, this feature may be directly 

affected by the difficulty level of an exercise. 

 

 

3.3.3. Watching related videos before or after correctly answering the first time 

 

If students watched videos related to a question within 10 minutes of answering correctly the first time, we 

defined them as having an impression of relevant concepts when attempting the exercise. By contrast, if students 

watched related videos within 10 minutes of finishing the exercise, we defined them as being unfamiliar with the 

concepts and indicated that they gained familiarity only after watching the videos. 
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3.3.4. Student approach to questions before answering correctly the first time 

 

We collected data on student behaviors before correctly answering a question the first time. Students were 

divided into six types depending on how they processed the answers (Table 7).  

  

Table 7. Types of students based on answering process  

Answering 

Process 

Attempt Count Before 

Answering Correctly 

First Time 

Incorrect Answer Count 

Before Answering Correctly 

First Time  

Final Result 

(Correct or 

Incorrect)  

Example 

1 1 0 True [C] 

2 2 1 True [W, C] 

3 >2 >1 True [W, W, C] 

4  >1 0 True [no, no, C] 

5 >0 >0 False [W, no, W] 

6 ≥0 0 False [no, no, no] 

Note. C = correct answer, W = wrong answer, no = skipped question. 

 

 

3.3.5. Number of correct answers 

 

Except for the number of correctly answered questions, all the aforementioned features are related to student 

behaviors when correctly answering a question for the first time. These represent a student’s proficiency in 

corresponding knowledge nodes, as formulated by Muñoz-Merino, Ruipérez-Valiente, Alario-Hoyos, Pérez-

Sanagustín, and Kloos (2015), who also mentioned that the repeated practice of exercise questions improves 

student learning and achievement. While exercises on NTHU’s MOOC platform are not in parametric form (and 

thus, such repeated practice is less effective), we believe the number of correct answers represents a student’s 

perception of how much information an exercise contains. 

 

 

3.4. Prediction of learning performance based on video-watching behaviors 

 

Every student has a unique learning mode and behavior, and we hypothesized that these affect their learning 

performance. To verify this hypothesis, we fed data on learning blocks, gaps, and regularity into a deep neural 

network (DNN) model. The model used ReLU as the activation function to predict student performance. Note 

that when creating predictions in MOOCs, it is necessary to avoid inaccuracies caused by sparse data (Yang et 

al., 2017). To resolve this problem, we only incorporated learning data for students who took the quiz in our 

system. Figure 2 illustrates the architecture of our performance prediction model, including the features we used 

and the number of nodes in each DNN layer. The mean absolute error (MAE) was applied to denote the model’s 

performance. In brief, we used 10-fold cross-validation and shuffling to obtain test data. The data were then used 

to calculate the MAE as follows: 

)|, 

where fi and yi are the predicted and actual scores of student i, and N is the number of students. MAE is the 

difference between the predicted and actual scores, with a lower MAE indicating better predictive performance. 

The number of hidden layers was determined using trial and error and cross-validation in performance tests for 

DNN (Table 8). Figure 3 shows training and validation loss during the training of the predication model on the 

basis of video-watching behaviors. 

 

Table 8. Number of hidden layers vs. mean absolute error 

 6 layers 7 layers 8 layers 

MAE 8.5 7.7 6.8 
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Figure 2. Architecture of score prediction model based on video-watching behaviors 

 

  
Figure 3. Learning curve for prediction model based on video-watching behaviors 

 

 

3.5. Prediction of familiarity with concepts based on answers to exercises 

 

Exercises potentially indicate if a student is familiar with a course’s content. Thus, in this study, we input the 

aforementioned variables on students’ exercise-answering behavior in a five-layered DNN model (Figure 4) to 

predict learning performance. Table 9 shows the number of hidden layers determined using trial and error and 

cross-validation. We defined a large number of such variables (e.g., number of attempts, videos watched before 

answering correctly, and rate of correctly answered questions) to obtain better predictions. We then used the 

sigmoid function as the activation function to determine the probability of a correct answer. We set the threshold 

to 0.5, and if the probability of a correctly answered question is greater than or equal to 0.5, then the answer can 

be judged as correct (and vice versa). Figure 5 shows training and validation loss during the training of the 

prediction model on the basis of exercise-answering behaviors. 
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Figure 4. Architecture of prediction model based on exercise-answering behaviors 

 

 
Figure 5. Learning curve of prediction model based on exercise-answering behaviors 

 

Table 9. Number of hidden layers vs. accuracy 

 4 layers 5 layers 6 layers 

Accuracy 0.733 0.975 0.883 

 

 

4. Results 

 
4.1. Use of learning behaviors to evaluate learning performance 

 

The introductory course on IoT conducts a final exam to evaluate student performance, whereas the calculus 

course administers a quiz every four weeks (a total of three quizzes). We built temporal performance prediction 

models on a weekly basis to measure the accuracy of the prediction approaches. We ran our models at the end of 

each week. “Week1” represents all collected log data from the beginning of the course to the end of the first 

week, and “Week2” denotes data collected from the start of the course to the end of the second. We construct 

similar variables for the remaining weeks of the two courses.We then verified the effectiveness of our prediction 

model on the basis of MAE using data for the two courses. Since the introductory IoT course conducted one final 

exam to evaluate students’ performance, every predicted result is validated by the same actual data (students’ 
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final exam score). Therefore, Table 10 contains only one MAE. On the other hand, the calculus course had three 

tests, and thus, Table 11 comprises three MAEs. “Quiz1-MAE” is the comparison between our predicted scores 

and the actual scores of the first quiz. “Quiz2-MAE” is a comparison of our predicted scores with the actual 

scores of the second quiz, and “Quiz3-MAE” is a comparison of our predicted scores and actual scores of the 

third quiz. 

 

Table 10. Predictive performance (MAE) for IoT introduction course 

  MAE 

Week1 18.2 

Week2 13.6 

Week3 10.1 

Week4 7.9 

Week5 6.9 

 

Table 11. Predictive performance (MAE) for calculus-I course 

  Quiz1-MAE  Quiz2-MAE Quiz3-MAE 

Week1 17.9 22.93 23.7 

Week2 15.6 22.3 23.1 

Week3 10.56 21.4 22.6 

Week4 6.9 19.3 21.7 

Week5 X 15.9 17.4 

Week6 X 12.0 12.2 

Week7 X 8.4 8.9 

Week8 X 7.0 8.0 

Week9 X X 7.19 

Week10 X X 6.9 

Week11 X X 6.8 

Week12 X X 6.8 

 

Table 10 shows a significant gap between students’ predicted scores at the beginning of the IoT introductory 

course and the actual final scores. However, our model’s performance improved in the following weeks. MAE 

based on Week5 (students’ whole learning behavior) was only 6.9 points, indicating that our model had 

acceptable accuracy. 

 

Table 11 shows that Quiz1-MAE based on Week4, Quiz2-MAE based on Week8, and Quiz3-MAE based on 

Week12 are all less than seven points, indicating that the completeness of the collected data affected our model’s 

accuracy. That is, for a given test administered in WeekN of a course, our model’s prediction would have the 

least errors if its input was WeekN. 

 

For RQ1, since all the above-mentioned MAEs are less than seven points, it is reasonable to conclude that our 

model can accurately predict student performance in a given course on the basis of their learning behavior. 

Accordingly, running our model on a weekly basis could give teachers reliable information on student 

performance at the end of each week.  

 

The conclusion also supports that our system is an alternative approach that teachers can adopt to track student 

performance without repeatedly administering tests. Teachers can use the model to identify students who may 

need more teaching assistance and accordingly, provide such aid on a timely basis. Finally, this model could 

enable students who have failed courses to identify changes they need to make to their learning patterns. 

 

 

4.2. Use of exercise data to predict learning performance 

 

Using the features mentioned in Table 6, the exercise-based model could predict students’ familiarity with 

concepts when answering exercise questions. In other words, this model could predict if a student would 

correctly answer a question on relevant concepts by collecting and analyzing students’ answer records. Table 12 

lists the number of times two Calculus I students (students C and D) answered the quiz questions correctly and 

incorrectly, along with the predicted result. Finally, we applied a confusion matrix (Table 13) to the model to 

estimate the model’s accuracy, recall, precision, and F1 score. All the aforementioned values were acceptable, 

indicating that the exercise-based model had acceptable predictive power. 
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Table 12. Comparison of predicted and actual results for two calculus-I students  

 Student C Student D 

 Real Predict Real Predict 

Question 1 Correct Correct Correct Correct 

Question 2 Correct Correct Correct Correct 

Question 3 Correct Correct Correct Wrong 

Question 4 Wrong Wrong Correct Correct 

Question 5 Correct Correct Wrong Wrong 

Question 6 Wrong Wrong Wrong Wrong 

Question 7 Correct Correct Wrong Wrong 

 

Table 13. Confusion matrix of predicted results for calculus-I students by exercise-based model 

 Predicted wrong Predicted correct 

Actual Wrong 6,386 0 

Actual Correct 173 418 

Accuracy 0.975 

Precision 1 

Recall 0.707 

F1-Score 0.828 

 

Regarding RQ2, the confusion matrix results indicated that our system with the exercise-answering feature could 

provide high-quality predictions. MOOC instructors who use online exercises can feed answering data into our 

system to better understand how students learn. 

 

 

4.3. Comparisons with other models 

 

4.3.1 Use of learning behaviors to evaluate learning performance 

 

We compared our research with another model by building a baseline model and using the same data as input. 

We referenced Python’s scikit-learn (sklearn) library to build the SVR baseline model, and set the kernel 

parameter as “rbf.” Table 14 lists the most critical MAEs in this baseline model.  

  

Table 14. Support vector regression predictive performance  

Calculus I  MAE 

Week4: Quiz 1 15.6 

Week8: Quiz 2 15.2 

Week12: Quiz 3 15.6 

 IoT Introduction  MAE 

Week5: Quiz 20.3 

 

 

4.3.2. Use of exercise data to predict learning performance 

 

Similarly, we deployed a decision tree model with the same data as input to predict if the students would 

correctly answer questions using relevant knowledge. We referenced Python’s sklearn library to build the 

decision tree baseline model. We set the criterion parameter to “gini.” Table 15 presents the predicted results for 

the decision tree model.  

 

Table 15. Predicted results for calculus-I students by decision tree model 

Accuracy 0.812 

Precision 0.801 

Recall 0.603 

F1-Score 0.695 

 

 

5. Conclusions 

 

In this study, we designed a system with two functions to help teachers better understand students’ learning 

performance. The first function evaluated student performance on the basis of their learning behaviors. We tested 
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our system using student data from two courses conducted on NTHU’s MOOCs platform. The data included 

students’ video-watching behaviors and answering exercise questions. We formulated a deep learning model, 

which processed the data and estimated a predicted grade for each student. The study indicated that the model 

needed a complete overview of students’ learning behavior to obtain the most accurate outcome. The second 

function used an exercise-based DNN model to effectively evaluate a student’s performance on the basis of how 

they answered exercise questions. 

 

(1) Recent research highlighted the problems of high dropout and low completion rates for MOOCs (Sun, Ni, 

Zhao, Shen, & Wang, 2019). Since MOOCs are a public online course platform, some students may cheat on an 

exam, and thus, it is difficult to ensure that students consistently follow the honor code. Therefore, MOOCs may 

not be a fair learning environment. Moreover, questions have been raised about the authenticity of course credits 

and certificates (Bady, 2013). 

 

(2) Therefore, this study aimed to propose an objective and accurate AI-based method to examine students’ 

learning effectiveness without interference in MOOCs. 

 
(3) In addition, the proposed model could give teachers more accurate information on whether students have 

mastered a concept. Our system used the scores for video-watching behaviors and accuracy scores for assigned 

quizzes and final exams to reflect students’ learning outcomes.  

 

In conclusion, our AI system could remedy the present-day inability of MOOCs to evaluate student performance 

on the basis of learning behaviors, which is a major contribution of our study, particularly to the creation of 

precision education platforms. Importantly, the experimental results of our model were significantly better than 

those of the baseline models. The results sufficiently demonstrated the feasibility of using DNN. Instructors can 

use our systems to identify low-performing students and provide them with additional support. By doing so, our 

system may create a learning–teaching environment that benefits both students and lecturers. 

Despite the valuable findings, our study is subject to certain limitations because of the constraints in time and 

testing frequency. We focused on two MOOC courses, and these courses did not administer quizzes every week. 

In addition, we only used student behaviors to evaluate their performance. 

 

Therefore, future studies should consider applying the proposed AI-based evaluation system to other MOOCs to 

validate its effectiveness using larger datasets. The improved system could incorporate the feature of sending 

notifications to students to help them accurately evaluate their current study patterns before a course ends. This 

would give them the opportunity to optimize their learning behaviors. Finally, future works could combine other 

affect-detecting systems such as student response systems (Li, & Wong, 2020) with our proposed system to 

obtain real-time affective factors. By analyzing student responses, teachers can take prompt action to improve 

learning and teaching (Hwang et al., 2020).  
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