
Kang, J., Diederich, M., Lindgren, R., & Junokas, M. (2021). Gesture Patterns and Learning in an Embodied XR Science 

Simulation. Educational Technology & Society, 24 (2), 77–92.   

77 
ISSN 1436-4522 (online) and 1176-3647 (print). This article of the journal of Educational Technology & Society is available under Creative Commons CC-BY-NC-ND 

3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). For further queries, please contact Journal Editors at ets.editors@gmail.com. 

 

Gesture Patterns and Learning in an Embodied XR Science Simulation 
 

Jina Kang1*, Morgan Diederich1, Robb Lindgren2 and Michael Junokas3 
1Instructional Technology and Learning Sciences, Utah State University, USA // 2Curriculum & Instruction, 

University of Illinois at Urbana-Champaign, USA // 3Media and Cinema Studies, University of Illinois at 

Urbana-Champaign, USA // jina.kang@usu.edu // morgan.wood23@aggiemail.usu.edu // robblind@illinois.edu 

// junokasm@gmail.com 
*Corresponding author 

 

ABSTRACT: Recent research has emphasized the importance of leveraging embodied interactions for learning 

critical STEM concepts. ELASTIC3S—an embodied environment for learning about cross-cutting concepts (i.e., 

non-linear growth)—allows learners to interact with different science simulations through whole-body gestures. 

Technological advances in gesture recognition can track and respond to students’ gestures, however, there has 

been little investigation into how the gestures performed in these environments relate to subsequent learning. 

The need for sequential pattern recognition methods is critical in embodied learning if we are to understand how 

gestural interaction with a simulation facilitates learning. Using data collected via Microsoft Kinect V2 from 

twelve college students, we applied multivariate Dynamic Time Warping for clustering to identify gestural 

patterns in ELASTIC3S as evidence for embodied learning processes. Our findings showed that identified trends 

of simulation use were indicative of students’ struggles to understand the underlying ideas or use of the system 

and were associated with learning performance. These indicators can potentially be used to leverage real time, 

in-simulation assistance and promote a more adaptive learning experience via embodied simulations. 

 

Keywords: Embodied learning, XR Science education simulations, Gesture recognition, DTW clustering, Time 

series analysis  

 

 

1. Introduction 
 

There has been significant interest in leveraging learners’ embodied interactions for teaching critical STEM 

concepts (Lindgren et al., 2016; Nathan & Walkington, 2017; Stieff et al., 2016). This interest builds upon 

theories of embodied cognition that assert a fundamental connection between the actions/perceptual processes of 

the body and how people think and learn (Glenberg, 2010; Shapiro, 2019; Wilson, 2002). Research has shown 

that learners can be prompted to perform gestures and enact their emerging understanding of STEM ideas in 

ways that promotes new learning (Gallaher & Lindgren, 2015; Lindgren, 2014). This seems to be true even for 

abstract ideas and unseen processes such as molecular interactions (e.g., Mathayas et al., 2019). A particularly 

challenging concept that cuts across STEM domains is non-linear growth: understanding where it is present and 

how it differs from linear growth (Tretter et al., 2006).  

 

We designed an XR embodied learning environment to target students’ ideas about non-linear growth called 

ELASTIC3S (Embodied Learning Augmented through Simulation Theaters for Interacting with Cross-Cutting 

Concepts in Science). The ELASTIC3S platform allows learners to control different science simulations with 

user-defined whole-body gestures (e.g., hand waving, kicking). This particular implementation of XR uses 

gesture recognition technology paired with multiple large digital displays to create an interactive and immersive 

environment where students engage with science simulations through gesture. Although these types of 

environments have shown promise for summative learning outcomes (Johnson-Glenberg et al., 2014; Lindgren 

et al., 2016), there has been little investigation into how the progression of gestures that learners perform in these 

environments relate to their subsequent learning, and how the gestures themselves can be used for the purposes 

of assessment and monitoring. The purpose of this work is to apply pattern recognition algorithms to the gestures 

that students perform in an embodied XR science education simulation as a means of understanding what is 

learned and when personalized feedback should be presented. 

 

 

2. Relevant work 
 

2.1. Embodied learning 

 

Processes of human cognition are deeply rooted in how the body interacts with the environment (Gallagher, 

2006). Our understanding of how the world works is organized around the human sensorimotor system and our 

various modes of perception and action (Barsalou, 2008). Embodiment has increasingly become a focus in 
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various research domains including cognitive psychology (Glenberg, 2010), linguistics (Lakoff & Johnson, 

1980), and the performing arts (Noice & Noice, 2006). In education, researchers are applying ideas from 

embodied cognition to the design of learning environments. “Embodied learning” is essentially the forging of 

meaningful connections between body movements, artifacts, and learning content (Duijzer et al., 2019; Lindgren 

& Johnson-Glenberg, 2013; Skulmowski & Rey, 2018). This type of learning is based around the idea that a 

student has agency and an active role in their learning experience, and that learning activities can be designed to 

effectively leverage alignments between physical modes of interaction and target concepts. Relevant work has 

found that the use of embodied learning leads to improved learning outcomes and understanding in multiple 

domains (e.g., Han & Black, 2011; Glenberg, 2008; Goldin-Meadow, 2011; Segal et al., 2014). Specifically, 

research has been investigated in STEM education that identified a relationship between gestures and improved 

scientific reasoning (Crowder, 1996).  

 

Studies have demonstrated the learning effectiveness of embodied learning environments compared to more 

traditional learning settings. Johnson-Glenberg et al. (2011) conducted an experimental design studying if 

embodied learning using XR was more effective than traditional classroom learning in which seventy-one 9th 

graders participated. Results indicated that the embodied environment led to greater knowledge gains. As a 

follow-up study, they examined if the XR embodied learning environment was more effective than a desktop 

simulation, and they found that embodied learning yielded significant learning gains for chemistry and disease 

transmission (Johnson-Glenberg et al., 2014) and in the abstract domain of the electric field (Johnson-Glenberg 

& Megowan-Romanowicz, 2017). Lindgren et al. (2016) also evaluated the effects of embodied interaction on 

conceptual understanding and learning engagement where their results corroborated that of Johnson-Glenberg’s 

et al. (2014) desktop simulation and embodied learning findings. Specifically, Lindgren et al. (2016) identified 

that the embodied learning simulation that was designed to teach critical concepts in physics led to positive 

results in terms of students’ learning gains, engagement, and attitudes towards science. 

 

 

2.2. Multimodal learning in XR 

 

Learning is often multimodal (Jewitt, 2006) and associated with a variety of modes of communication (Ochao, 

2017). Being able to capture the change of mode is critical to the understanding of learning processes. 

Multimodality contributes to learning via both multimodal instruction and complex multimodal representations 

created by learners. Multimodal instruction facilitates learning with effectively integrated representations of 

content across different sensory modalities (e.g., Birchfield et al., 2008). 

 

Various methods have been developed by integrating multimodal data sources and have shown promise to 

further understanding of learning in an embodied environment. Traditional data such as observation, audio/video 

recording, and student and instructor discourse can be used to investigate embodied learning. However, such 

analytical processing of these data has limitations including being time consuming, error-prone, and having 

limited scalability (Prieto et al., 2018). Advanced technologies now enable the collection of a larger spectrum of 

multimodal data sources that reflect students’ embodied experiences and further inform multimodal learning and 

instruction. The overall effectiveness of body-based learning activities has been demonstrated, however, there 

has been less attention given to the progression of embodied actions (e.g., gestures) performed within such a 

learning environment and the ways that these progressions may be conducive to learning (e.g., Smith et al., 

2016). As the availability of multimodal data collected from embodied learning environments increases, 

identifying analytical approaches that allow for investigation and interpretation of these data becomes 

imperative.  

 

 

2.3. Time series clustering analyses 

 

Given the large quantities and ever-increasing complexity of data available, the need for scalable, time-series 

based analyses are critical (Lin et al., 2012). Scaling and performance necessitate additional revolutions in time 

series-driven pattern recognition. Many techniques, specifically in clustering, have evolved to meet this 

challenge. For instance, the KmL (K-Means for Longitudinal data) algorithm was developed out of K-means for 

longitudinal data (Genolini & Falissard, 2011). A benefit to using this over traditional K-means is that KmL can 

handle missing data seen frequently in time. Another time series clustering method, Dynamic Time Warping 

(DTW) clustering, has shown benefits. DTW calculates the minimum differences between two time series that 

can differ in length and amplitude based on the creation of an optimal warping path to assess similarities through 

one-to-many mapping (Li et al., 2010). The output of DTW results in a (dis)similarity metric that can then be 

leveraged in a clustering algorithm. For instance, Mezari and Maglogiannis (2017) used DTW on motion data to 
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recognize gestures. Shen and Chi (2017) also applied DTW by using 36 variables dealing with autonomy (i.e., 

hitcounts), temporal information (i.e., average times), and actions extracted from student interactions with a 

tutoring system. They explored different types of clustering methods, suggesting that popular clustering 

techniques such as K-Means do not account for the differing sequential nature of many educational-based 

problems. They explored DTW compared to the Euclidean distance and found DTW a viable method for 

clustering data where participants have differing lengths of time and numbers of interactions. The powerful 

applications of DTW are often lauded for the ability to evaluate time series of differing lengths and scalability to 

large quantities of data for pattern recognition.  

 

There is a paucity of research in investigating the analysis of fine-grained multimodal interaction data collected 

in a XR embodied learning environments, and how to interpret the interaction data of learners’ embodied 

actions. The goal of this paper, therefore, is to investigate the massive and dynamic gesture data generated as 

students interact with an XR embodied science simulation and how such gesture data relate to students’ 

embodied learning experiences. The main contribution of this paper is that we employ a novel analytical method 

(i.e., DTW clustering) to the fine-grained time-series gesture data. In particular, we adapt the data aggregation 

methods in Shen and Chi (2017) to investigate different granularities of gesture data and describe how each data 

granularity reveals different meanings. The present study is an exploratory one, in which we explore and 

describe different levels of analyses to discover the best data windowing techniques for identifying meaningful 

sequential patterns of students’ embodied actions. In addition, we explore different features derived from gesture 

data, and we identify potential features for personalized feedback that facilitate students’ productive whole-body 

movements and their learning in the future implementation of XR embodied learning environments.  

 

Our primary hypothesis is that certain patterns identified from students’ gesture data (e.g., time spent, volume, or 

speed on a specific gesture) will be related to their learning performance. For example, students who exhibit an 

increasing trend in their time spent on gestures that are misaligned with the target mathematical relationship 

(e.g., doing an addition gesture when a multiplication gesture is called for) to solve a problem will show lower 

learning gains. We aim to find new ways to analyze multimodal interaction data that will reveal any underlying 

connections between body movement and learning. This exploratory work lays the groundwork for automated 

detection of student embodied behaviors that ultimately supports personalized learning.  

 

 

3. Methods 
 

3.1. ELASTIC3S  

 

ELASTIC3S (see Figure 1) was developed using the Unity engine for Microsoft Kinect V2 to empower high 

school and undergraduate students to build scientific knowledge around the crosscutting concept of scale, 

proportion, and quantity. This crosscutting concept was used to bridge the science topics of (1) earthquakes and 

(2) acidity/basicity. To detect students’ movements and provide them with real-time skeletal-motion feedback 

(see Figure 1a), a gesture recognition system was developed using a hierarchical hidden Markov model 

(described in Junokas et al., 2018). The system is adaptive; that is, the system learns each participant’s different 

types of gestures associated with four mathematical operations (i.e., +1, −1, ×10, and ÷10), which the system 

uses to recognize the participant’s real-time skeletal data. This paper focuses on the gesture-based data that was 

collected during the earthquake simulation of ELASTIC3S, which explored the concept of linear and non-linear 

growth through the application of the Richter scale. Students began by developing personal gestures using the 

metaphorical framing for each mathematical function we identified during early pilot interviews (Alameh et al., 

2016). For example, participants were prompted to think of (1) addition as stacking a cube on top of a pile of 

other cubes, (2) subtraction as kicking one cube out of a pile, (3) multiplication as folding copies of a certain 

quantity on top of each other, and (4) division as splitting a stack into smaller groups. While students were cued 

to create gestures that adhered to this framing, the “one-shot” gesture recognition system (Junokas et al., 2018) 

meant that each student could develop their own personal gestural representation. The gestures that students 

created allowed them to explore the exponential concepts in different science topics (i.e., earthquakes and 

acidity/basicity).  
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(a) Student’s Skeleton and Two Bar Graphs     (b) Earth’s Fault Line 

 

 
(c) Three-Screen Simulation Space 

Figure 1. Screenshots of the ELASTIC3S XR Earthquake Simulation. Note. (a) Two bar graphs indicate the 

student’s input magnitude; (b) The Earth’s fault line shows the building of pressure associated with the 

magnitude; (c) A student is making a multiplication gesture. 

 

Once students completed the training phase, students were provided five sequential tasks that varied in difficulty. 

First, they are prompted to set the amplitude of the seismic waves to create a different magnitude of earthquake. 

Students begin with a straightforward task, which we call M2, where they create a magnitude 2 earthquake 

(corresponds to 100 amplitude units, 102). The most efficient use of gestures to complete this task would be, 

starting at 0, to add 1, then multiply by 10 and multiply by another 10, resulting in an amplitude of 100 units.  

 

Each task moved students through varying complexities of their gestures as well as conceptual understandings; 

for example, M3.5 requires students to apply their acquired knowledge of the exponential nature of the Richter 

scale in order to create a magnitude of 3.5 earthquake. This magnitude is not halfway between amplitudes of 

magnitude 3 and 4 and requires an in depth understanding of exponential growth. The task names, the 

corresponding amplitude, and level of difficulty are listed in Table 1.  

 

Table 1. Simulation tasks and difficulty 

Task order Task name Corresponding amplitude Difficulty level* 

1 M2 102 = 100 Mid - Hard 

2 M3 103 = 1,000 Easy - Mid 

3 M3.5 103.5 = 3,162.28 Hard 

4 M7 107 = 10,000,000 Easy 

5 M8 108 = 100,000,000 Easy 

Note. *Relative to other given tasks. 

 

 

3.2. Participants 

 

A total of twenty-four undergraduate students from the midwestern region of the United States participated in the 

earthquake simulation, which consisted of a pre-test, simulation session, and post-test. Following the IRB-

approved protocol, each participant individually completed a task-based interview consisting of (1) a pre-test, (2) 

a simulation session lasting about 30 minutes, and (3) a post-test in a lab with a facilitator in the room. The pre-

/post-tests consisted of questions that assessed their understanding of earthquakes and linear/non-linear growth 

in both the context of earthquakes and new contexts (see details in 3.3.3). During the simulation session, the 

participants were asked to engage with the earthquake simulation. Both the pre-/post-tests and simulation session 

were audio and video recorded. Unfortunately, the logs of early student participants were not recorded, with one 

additional student identified as an outlier via visualizations (see section 3.3.2) thus leaving twelve students’ data 
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available for this study. Of these twelve students (mean age = 19.2), 58% (n = 7) stated they were female, 66% 

were white, two preferred not to answer, one student was Asian, and one identified as multiracial. 

 

 

3.3. Data sources 

 

3.3.1. Kinect data 

 

The participants completed five tasks in a 30-minute earthquake simulation session. This paper focuses on the 

data collected via Microsoft Kinect V2 during the simulation session. Datapoints were collected at a rate of 

approximately 30 frames per second, in which the 3D coordinates (x, y, z) of 25 skeleton joints relative to the 

Kinect were tracked and recorded. Particularly, each joint’s coordinates were recorded based on positions 

relative to the position of the Kinect sensor (see Figure 2).  

 

 
Figure 2. Visual representations of data collection including joints of interest 

  

 

3.3.2. Data preprocessing and feature extraction  
 

The first level of preprocessing involved data cleaning through annotation of session recorded video, 

documenting when participants started and stopped each gesture and the type of gesture being performed. This 

information was then synced with the Kinect data and resulted in a dataset that contained all recorded data, the 

gesture type, gesture order, timestamp, and the task being completed. We excluded any Kinect data without 

annotations. We also visualized the data to remove unintended movements recorded by the Kinect. It was 

identified that one participant had extreme outliers in M2 and M3.5 in both volume and speed, which appeared to 

be due to system glitches. That student was therefore removed from the dataset. 

 

Using the cleaned data, we developed various simulation use measures (see Table 2). First, the speed of a gesture 

was measured by finding the magnitude of the velocity of a given joint position, formally expressed as (pn: nth 

joint position, t: time of a given joint position, s: speed): 

 

 

 
 

This can be ultimately measured at individual, combinations, and/or the complete joint positions. The volume of 

a gesture was measured by finding the product of the Euclidean distance between the maximum and minimum 

points of given joint positions at each dimension (x, y, z), formally expressed as (v: volume): 
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This rectangular projection of volume was measured on all joints, providing a spatial perspective to a performed 

gesture. We then used the distance between two joint positions: spine_base and spine_mid (see Figure 2; these 

data points represent each participant’s height) for the normalization, rescaled by each participant’s body size.   

 

While such frame-level data (referred to as “frame granularity”) showed in-moment data, we wished to identify 

what level of aggregation was most important and made the most sense. This was completed by comparing 

multiple aggregations on frame granularity data (Shen & Chi, 2017). We therefore aggregated the frame 

granularity data by each gesture (referred to as “gesture granularity”) to see if there would be a difference 

between our two types of granularity: gesture and frame. We found that compared to the frame granularity, the 

gesture granularity was more interpretable, as we were interested in the gesture as a whole, rather than a single 

frame. As for speed and volume of each gesture, the maximum, minimum, variance, and average were created 

for both variables on each distinct gesture to retain as much information as possible.  

 

Further, we needed to know how long the gesture took (i.e., timestamp at the last frame – timestamp at the first 

frame) and the type of gesture that was made. We named these measures as: “total time spent on” addition, 

subtraction, multiplication, and division. In addition, during the aggregation process, we naturally lost the 

granularity of frames. We therefore included how many “frames” were made in the creation of each gesture, 

which was named as “number of frames.” Table 2 shows the final list of variables (i.e., simulation use 

measures), the result of the aforementioned data preprocessing and feature extraction efforts.  

 

Table 2. Simulation use measures for gesture level analysis 

Variable name Description Data type Example 

Task Earthquake simulation tasks  Character M2 

Volume  Four features (average, variance, max, 

min) generated from the aggregation of 
1normalized volume. 

Decimals (m3) 0.0033 

Speed Four features (average, variance, max, 

min) generated from the aggregation of 
1normalized speed. 

Decimals (meter/second) 0.0437 

Number of frames Number of rows condensed to produce 

aggregated row at the gesture level 

Whole Number 79 

Time spent (on gesture) Each gesture was considered a feature, 

resulting in four features (addition, 

subtraction, multiplication, division). 

Decimals (second) 1.2853 

Note. 1Normalization occurred on the frame level which standardized each motion across all participants for 

comparison.  

 

 

3.3.3. Learning performance data 
 

The four researchers scored each participant’s understanding of earthquake concepts and exponential growth 

during pre- and post-tests (Kang et al., 2018). Table 3 shows the descriptive statistics of learning performance 

data. During pre-/post-tests, the facilitator asked several questions to see the participant’s understanding of 

earthquakes (i.e., conceptual knowledge) and exponential growth in the earthquakes (i.e., exponential 

knowledge) and new contexts (i.e., transfer knowledge) (See sample questions in Appendix A). In this study, the 

normalized gain score of each category (conceptual, exponential, and transfer knowledge) was calculated by 

((posttest score) – (pretest score)) / ((total available score) – (pretest score)) (Hake, 1998). These learning 

performance measures were used later to examine if any identified clusters showed significant intergroup 

differences of learning performance.  

 

Table 3. Descriptive statistics for learning performance 

 Conceptual Exponential Transfer 

 Pre Post 1Gain Pre Post 1Gain Pre Post 1Gain 

Mean 3.08 8.25 0.75 4.63 7.67 0.28 3.00 2.88 -0.08 

SD 0.90 1.08 0.15 3.48 2.63 0.28 1.65 1.86 0.50 

Note. 1Normalized gain score (Hake, 1998). 
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3.4. Analyses 

 

The gesture granularity data utilized in this study are multivariate time series (see the variables in Table 2). 

Several considerations were observed to maximize effectiveness of this multivariate information in categorizing 

individuals based on their embodied learning. For example, time series data is a critical aspect of understanding 

student embodied learning process, and individuals did not complete a task in the same number of frames or 

gestures. DTW takes into consideration time series of different lengths, resulting in a computed similarity value 

of each pair of time series data, which is similar to a Euclidean distance (Shen & Chi, 2017). This results in a 

distance matrix comparing distance similarity values with each other.   

 

For a single variate, visual example on warping paths and the generation of a similarity metric we present two 

examples in Figure 3: (1) DTW dissimilarity = 2.93 between David and Alyssa (Figure 3a), (2) DTW 

dissimilarity = 0.56 between Gabby and Rhiannon (Figure 3b). In each graph, we see three panels in each 

warping path. Each student’s behavior over the course of time for a given variable is shown in each vertical (left) 

and horizontal (lower) panel. The central panel is the cost matrix, where we see the warping path between the 

two students’ average volume patterns over time. A score of zero, or a diagonal line, indicates that the patterns 

are identical and no warping was required to “match” one pattern to another. The more warping that is required, 

the larger the metric is, indicating more dissimilarity between two students’ behaviors.  

 

  
(a) Comparison of David and Alyssa,  

DTW = 2.93 

(b) Comparison of Gabby and Rhiannon, DTW = 0.56 

Figure 3. Average volume comparison between a pair of students 

 

Further, we sought to understand how different levels of the data could yield meaningful clustering results that 

address our objectives. Three levels: (1) task level, (2) subsequence level, and (3) all tasks level were created to 

view the data in multiple ways (see Table 4). For example, M3.5 on the task level used gesture data from only 

task 3.5. For M2/3/3.5 in subsequence level, we included the student’s first gesture made in M2 to their last in 

M3.5. Therefore, subsequence level was ultimately used to understand the overall trajectory of the behavior up to 

that point. Task level and subsequence level clustered twelve matrices, each of which included each of twelve 

participants’ multivariate gesture granularity data for each level of analysis. Finally, for all tasks level, we 

included all participants’ gesture granularity wherein each student’s behavior per task was evaluated against all 

other students’ task behavior.  That is, all task level clustered a total number of sixty matrices (i.e., twelve 

students ✕ five tasks = sixty matrices), each of which included the multivariate gesture granularity data each 

participant made during each session.  

 

Once the DTW value or metric was derived for each pair of data, the values were used in the clustering process. 

We selected the Hierarchical clustering method using Wards Linkage to ultimately partition students into 

clusters. The optimal number of clusters was identified using Silhouette method for each analysis level: 3 

clusters. This was all completed in the tsclust package in R. To examine statistically significant differences of 

each variable across three clusters in each level of analysis, we first checked the assumptions of one-way 
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ANOVA. Along with our small sample size, the normality and homogeneity of variances were violated. 

Therefore, we performed Kruskal-Wallis non-parametric analyses of gesture and learning performance variables 

(i.e., normalized gain on conceptual, exponential, and transfer knowledge) of each cluster generated from task 

level, subsequence level, and all tasks level. Then, we conducted post hoc tests with the Bonferroni adjustment 

(Kruskal & Wallis, 1952) to examine statistically significant differences of each variable between each pair of 

three clusters. 

 

Table 4. Different levels considered for clustering and other analyses 

Analysis level Tasks included in each analysis  

(# gesture granularity data) 

Data structure examples1 

Task level M2 (n = 64) A.M2, B.M2 … T.M2 

 M3 (n = 21) A.M3, B.M3 … T.M3 

 M3.5 (n = 173) A.M3.5, B.M3.5… T.M3.5 

 M7 (n = 86) A.M7, B.M7… T.M7 

 M8 (n = 21) A.M8, B.M8 … T.M8 

Subsequence level M2 (n = 64) A.M2, B.M2 … T.M2 

 M2, M3 (n = 85) (A.M2+A.M3), (B.M2+B.M3) … 

(T.M2+T.M3) 

 M2, M3, M3.5 (n = 258) (A.M2+A.M3+A.M3.5) … 

(T.M2+T.M3+T.M3.5) 

 M2, M3, M3.5, M7 (n = 344) (A.M2+A.M3+A.M3.5+A.M7) … 

 M2, M3, M3.5, M7, M8 (n = 365) (A.M2+A.M3+A.M3.5+A.M7+A.M8) … 

All tasks level M2, M3, M3.5, M7, M8 (n = 365) A.M2, B.M2 … T.M7, T.M8 

Note. 1Letters that come prior to task information are shortened aliases for students. A.M2 is Alyssa’s data from 

task M2 exclusive.  

 

 

4. Findings 
 

4.1. Task level vs. Subsequence level 

 

To identify students’ gestural patterns, we first explored two different levels: task level and subsequence level. 

As described in 3.4, non-parametric analyses examined statistically significant differences of gesture and 

learning variables across three clusters. Of interest, the number of frames variable showed the significant 

intergroup differences in every task and subsequence level. Overall gesture characteristics of each cluster were 

identified as “High-Frame,” “Mid-Frame,” and “Low-Frame” mainly using each cluster’s mean rank of number 

of frames. Table 5 shows the characteristics of each cluster in the subsequence level analyses. In particular, we 

used the results of K-W analyses and post hoc tests by including selected statistically significant variables (i.e., 

simulation use measures, learning performance variables) identified in each segment analysis. 

 

The task level analyses showed the participants’ significant gestural behavior differences across three clusters 

during each task. One interesting finding is that a High-Frame cluster showed the lowest transfer change 

(High_mean rank = 2.0, Mid_mean rank = 8.0, Low_mean rank = 8.0) during the M7 task (χ2(2) = 7.748, p < .05) and the 

lowest exponential change (High_mean rank = 4.20, Mid_mean rank = 9.50, Low_mean rank = 4.75) during the M8 task 

(χ2(2) = 6.009, p < .05). The High-Frame clusters during M7 and M8 show the same tendency of longer time 

spent on gesture multiplication (M7: χ2(2) = 55.658, p = .000; M8: χ2(2) =10.515, p = .005). Potentially at this 

point, the students who showed this gestural characteristic could be provided better scaffolding, which could, in 

turn, be more successfully transferred to novel contexts.  

 

The subsequence level analyses also identified three clusters in each aggregated segment. As shown in Table 5, 

within each subsequence segment, all High-Frame clusters show the longest time spent on gesture subtraction, 

while all Mid-Frame clusters show the shortest time spent on gesture subtraction, as evaluated using K-W non-

parametric testing. The two gestures, subtraction and division, indicate a student made an adjustment of the 

gestures they have added, realizing previous gestures were made incorrectly. To complete the tasks in the 

optimal way, these two gestures are not required at all. The presence of these patterns in the data suggests that 

students may have had difficulty employing the correct sequence of gestures that were required. Figure 4 shows 

the average time spent trend (i.e., the average time spent per a single gesture) on two gesture types: gesture 

multiplication and gesture subtraction. One interpretation may be that students initially had trouble grasping the 

system, as the average time spent on Gesture Subtraction decreases over the segments (see Figure 4a). However, 

we also recognize that the High-Frame groups show significantly more time spent on gesture subtraction during 
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the first two tasks than the other groups which may signify the overall difficulty these students had and may 

require additional support in situ. 

  

(a)  Average Time Spent Cluster Trends on Gesture 

Subtraction 

(b) Average Time Spent Cluster Trends on Gesture 

Multiplication 

Figure 4. Average time spent trends on gesture 

 

As shown in Figure 4b, High-Frame clusters show an increasing trend, while the Mid- and Low-Frame clusters 

show a decreasing trend. Particularly, the High-Frame cluster show the lowest time spent on multiplication 

gestures for the first two subsequence segments: M2 and M2/3.5. The High-Frame clusters then overtook the 

other two clusters when the later tasks’ data (i.e., M3.5, M7) were added. This increasing average time spent on 

multiplication gesture may indicate this is a point of tension for the student. During the last two segments, 

compared to the Mid-Frame clusters, the students in the High-Frame clusters also appeared to achieve lower 

normalized gain on transfer knowledge, indicating they were unable to transfer their knowledge to new contexts. 

 

In Figure 5, the normalized volume per gesture shows the similar trends across all clusters; that is, the increasing 

trend on the M2/3 and M2/3/3.5/7/8 subsequences. When we included M3 in the subsequence (i.e., the M2/3 

segment), the average volume made for each gesture increased. This was echoed when M8 data was included in 

the full sequence. The High-Frame clusters showed consistently the lowest average of volume over the entire 

task progression. Task M8 (from M7) is the easiest task that requires students to go over the similar thinking 

process they practiced during M2 and M3. Additionally, the Mid-Frame group showed the sharpest increasing 

trend of average volume from M7 to M8. Given the highest transfer knowledge gain Mid-Frame groups showed, 

the tendency of increasing volume during each following task of M2 or M7 may indicate students’ confidence on 

their gestures. 

 

 
Figure 5. Average normalized volume trend 
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Table 5. Cluster characteristics: Gesture and learning - subsequence level 

Tasks 

included 

# Granularity 

data1 

Selected key 

variables2 

High-Frame 

Cluster 

Mid-Frame 

Cluster 

Low-Frame 

Cluster 

Post hoc 

results5 

M2 Total = 64 

 

High = 20 

Mid = 21 

Low = 20 

Frames 

(χ2(2) = 25.121, p 

= .000**) 

MR4 = 45.33 MR = 36.55 MR = 17.65 **High-Low; 
**Mid-Low 

Timespent_S3 

(χ2(2) = 18.017, p 

= .000**) 

MR = 43.25 MR = 26.19 MR = 28.91 **High-Mid; 
**High-Low 

Timespent_M 

(χ2(2) = 17.228, p 

= .000**) 

MR = 23.55 MR = 44.95 MR = 28.91 **High-Mid; 
**Mid-Low 

M2/ 

M3 

Total = 85 

 

High = 25 

Mid = 30 

Low = 30 

Frames 

(χ2(2) = 25.121, p 

= .000**) 

MR=63.73 MR = 36.55 MR = 17.65 **High-Low; 
**Mid-Low 

Timespent_S3 

(χ2(2) = 18.017, p 

= .000**) 

MR = 43.25 MR = 26.19 MR = 28.91 **High-Mid; 
**High-Low 

Timespent_M 

(χ2(2) = 17.228, p 

= .000**) 

MR = 23.55 MR = 44.95 MR = 28.91 **High-Mid; 
**Mid-Low 

M2/ 

M3/ 

M3.5 

Total = 258 

 

High = 57 

Mid = 147 

Low = 52 

Frames 

(χ2(2) = 107.164, p 

= .000**) 

MR = 202.11 MR = 129.02 MR = 54.13 **High-Mid; 
**High-Low 

Volume_Average 

(χ2(2) = 17.482, p 

= .000**) 

MR = 106.7 MR = 146.11 MR = 106.88 **High-Mid; 
**Mid-Low 

Speed_Average 

(χ2(2) = 10.973, p 

= .004**) 

MR = 131.82 MR = 139.11 MR = 99.42 **Mid-Low 

 

Timespent_S 

(χ2(2) = 20.970, p 

= .000**) 

MR = 146.32 MR = 123.48 MR = 128.33 **High-Mid; 
*High-Low 

M2/ 

M3/ 

M3.5/ 

M7 

 

Total = 344 

 

High = 98 

Mid = 138 

Low = 108 

Frames 

(χ2(2) = 177.092, p 

= .000**) 

MR = 268.41 MR = 173.74 MR = 83.88 **High-Mid; 
**Mid-Low; 
**High-Low 

Volume_Average 

(χ2(2) = 10.113, p 

= .006**) 

MR = 155.46 MR = 193.13 MR = 161.6 *High-Mid; 
*Mid-Low 

Speed_Average 

(χ2(2) = 9.315, p = 

.010*) 

MR=183.58 MR=183.4 MR = 148.52 *Mid-Low; 
*High-Low 

Timespent_S 

(χ2(2) = 17.125, p 

= .000**) 

MR = 185.27 MR = 165.19 MR = 170.26 **High-Mid; 
*High-Low 

Timespent_M 

(χ2(2) = 15.129, p 

= .001**) 

MR = 202.1 MR = 167.29 MR = 152.3 **High-Mid; 
*High-Low 

Transfer Change 

(χ2(2) = 8.437, p = 

.015*) 

MR = 2.00 MR = 8.80 MR = 7.00 *High-Mid 

M2/ 

M3/ 

M3.5/ 

M7/ 

M8 

 

Total = 365 

 

High = 101 

Mid = 145 

Low = 119 

Frames 

(χ2(2) = 11.192, p 

= .000**) 

MR = 287.16 MR = 187.42 MR = 89.21 **High-Mid; 
**Mid-Low; 
**High-Low 

Volume_Average 

(χ2(2) = 7.660, p 

=.022*) 

MR = 165.39 MR = 201.16 MR = 175.82 *High-Mid 

Timespent_S 

(χ2(2) = 17.874, p 

MR = 196.38 MR = 175.7 MR = 180.53 **High-Mid; 
**High-Low 
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=.000**) 

Timespent_M 

(χ2(2) = 16.575, p 

=.000**) 

MR = 215.51 MR = 178.53 MR = 160.84 *High-Mid; 
**High-Low 

Transfer Change 

(χ2(2) = 8.437, p 

=.015*) 

MR = 2.00 MR = 8.80 MR = 7.00 *High-Mid 

Note. 1Number of gesture granularity data included in the analysis. 2Key selected significant variables from non-

parametric analyses of each cluster. 3Total time spent on gesture (A: Addition, S: Subtraction, M: Multiplication, 

D: Division). 4Mean Rank. 5 Post hoc test results using Bonferroni correction. *indicates p-value < .05. 
**indicates p-value < .01. 

  

 

4.2. All tasks: Membership transfer 

 

To examine how each student shifted cluster memberships over five different tasks, we completed another 

analysis in which clustering took place where each task was evaluated for each person. Three clusters were 

selected as the optimal number of clusters. Similarly, the number of frame feature shows statistically significant 

differences across three clusters; therefore, we also used the mean ranks of number of frames to label each 

cluster. The non-parametric tests and post hoc analyses showed some interesting statistically significant variables 

across the three clusters: time spent on gesture addition (χ2(2) = 38.597, p = .000) and time spent on gesture 

subtraction (χ2(2) = 7.020, p = .030). For example, High-Frame cluster shows the longest time spent on gesture 

addition tendency (High_mean rank = 212.95), while Mid-Frame cluster shows the shortest time spent tendency 

(Mid_mean rank = 114.5). Such patterns of High-Frame cluster may indicate students were less strategic or 

struggling, since the use of gesture addition is indicative of less understanding of non-linear relationships 

between the amplitudes of seismic waves and the magnitude.  

 

Table 6. Membership transfer at all tasks level 

Pseudonym M2 M3 M3.5 M7 M8 2Key learning gains 

Alyssa H1 H H H M  Low Exponential/Conceptual/Transfer 

Blair H H H H M  Low Transfer 

David H M H  L M None 

Gabby H M H  L L Low Conceptual; High Exponential 

George L L L L M None 

Louise L L L L L High Exponential/Transfer 

Matthew L M L L M  Low Exponential  

Mindy L M L L M  None 

Rhiannon L M H L L High Exponential/Transfer 

Rosalind L M L L M  High Exponential 

Steven M M H H M  Low Conceptual/Exponential/Transfer 

Tabitha M M L L M Low Conceptual; High Transfer 

Note. 1This is an abbreviation of each cluster (H: High-Frame, M: Mid-Frame, L: Low-Frame). 2This is a 

summary of each student’s learning gain in each category of pre-/post-test scores. Low indicates the 25% of 

participants who had the least learning gains, where High represents the 25% participants who made greater 

learning gains. 

 

Table 6 shows each participant’s clustering membership transfer over the five tasks and their key learning gain. 

Notably, the majority of students were assigned to a High-Frame cluster during M3.5, the most challenging task. 

After the completion of the first two tasks (M2, M3), we expect students to no longer stay in High-Frame cluster 

during the second set of the similar practice (M7, M8), where they were able to apply what they learned from the 

earlier tasks. Therefore, the students who exhibit the patterns staying in High-Frame cluster (i.e., Alyssa, Blair) 

or switching to High-Frame cluster (i.e., Steven) seemed unable to figure out how to use the system until the end 

of the simulation session. These students’ lower learning performance indicated that such patterns may be an 

indicator of struggles. The participants who tended to stay in Low-Frame cluster toward the end of the 

simulation showed better learning gains in both exponential and transfer knowledge (i.e., Louise, Rhiannon). 

Understanding such cluster membership transfer reveals the trend of each student’s gesture use across five 

different tasks. This may suggest ideal gesture behavior that leads to a positive learning outcome, which needs 

further research to verify the relationship. 

 

 



88 

5. Discussion 
 

Recent research has highlighted students’ challenges in understanding complex and abstract STEM concepts and 

the role that embodiment can play in overcoming these challenges (e.g., Duijzer et al., 2019; Stieff et al., 2016). 

ELASTIC3S is an XR environment that was designed to facilitate crosscutting concept knowledge-building 

(scale, proportion, and quantity) by having students develop gestures to express ideas about linear/non-linear 

growth in different science domains. In this study, we were particularly interested in understanding embodied 

interaction data collected from an immersive XR platform as students were engaged in learning about non-linear 

relationships in one specific science domain (i.e., earthquakes). This study employed the DTW clustering 

method to explore and better understand students’ embodied learning processes based on the fine-grained time-

series gesture data recorded from the Microsoft Kinect. 

 

It is important to explore different data granularities as they can reveal meaningful patterns in different contexts 

(e.g., Shen & Chi, 2017). To best describe the embodied learning experiences in this simulation, we first 

explored different types of data granularity: frame vs. gesture. The frame granularity did not tell us as much 

information as we were interested in the gesture as a whole, rather than a single frame; therefore, the gesture 

granularity yielded more interpretable results. We further explored different levels of analyses: (1) task, (2) 

subsequence, and (3) all tasks, to discover the best data windowing techniques for sequential patterns of 

embodied learning. This highlights the importance of data exploration to best tell the story in a certain context, 

and contributes on the literature of understanding embodied learning process within technology-enhanced 

learning environments (e.g., Price et al., 2016), especially by applying different analytical applications of fine-

grained time-series embodied interaction data.  

 

In ELASTIC3S, students complete a series of five tasks with the goal of reaching a specific value on the Richter 

scale. Moving through the tasks, both students’ gesture use and their conceptual understandings are advanced as 

they become more familiar with the system. The subsequence level analyses revealed more meaningful temporal 

patterns than task level analyses, as their captured behavior in a given task was placed in context with previous 

tasks. Further, any changes that occurred at each segment were certainly influenced by performance the time 

before.  

 

The results indicate that certain gestural interaction trends of students’ simulation use identified in Mid-Frame 

clusters (e.g., a decreasing trend of time spent on gesture multiplication, relatively lower time spent on gesture 

subtraction over the entire segments, relatively higher average volume over the last three segments) seemed to be 

associated with higher learning gains. This suggests their increasing trend of volume toward the later segments 

may indicate the students’ higher confidence of using gesture as they become more familiar with the system and 

the exponential growth concepts, which needs further research to verify such relationship. The characteristics of 

a High-Frame cluster including the relationship with the learning gain measures showed that students exhibiting 

such characteristics (e.g., an increasing trend of time spent on gesture multiplication, relatively lower average 

volume over the last three segments) seemed less likely to learn the core ideas presented in the simulation. The 

results of the M2/3/3.5/7 segment, showed significant transfer knowledge gain differences between clusters. This 

may be an indicator of the needs of guidance for some students who showed the characteristics of High-Frame 

cluster based on their simulation use up to M7. For example, the system can track each individual’s subsequence 

data aggregated from M2 to M7. If a student shows relatively high speed, longer time spent on gesture 

subtraction or gesture multiplication, or smaller volume, the system may provide certain prompts so that students 

can reflect on what they have done up to the current task. In this way, students will be able to receive more 

practice. This is aligned with the literature that highlights the importance of capturing the subtle change of 

students’ multimodal interaction to understand their learning process and further yield positive learning 

performance (Jewitt, 2006; Ochoa, 2017). It is noteworthy that our sample size is relatively small (n=12) for 

making predictions that generalize to other groups of students. A larger sample is needed to validate that such 

patterns are representative of the behaviors of a larger group.  

 

The subsequence level analyses overall tracked different gestural interaction patterns during each task within the 

context of past tasks and gestures, suggesting which task the participants may have struggled in completing. We 

further examined each individual student’s cluster membership transfer (all tasks level) indicating an individual’s 

sequential pattern of simulation use. The students who switched to Low-Frame cluster toward to the last task 

tended to achieve more learning. However, the students who exhibited the tendency to backtrack (i.e., the longest 

time spent on gesture subtraction) and struggled with understanding non-linear contexts (i.e., the longest time 

spent on gesture addition) showed lower conceptual gain. This suggests the clustering transfer trend might be an 

indicator of more support or practice being needed. These findings are descriptive in nature, and require further 

investigation for causal inferences between gestural patterns and learning performance. 
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Research (e.g., Abrahamson & Lindgren, 2014; DeSutter & Stieff, 2017) have identified components (e.g., 

activities, materials, and facilitation) of embodied learning environments and design principles that can be 

applied to the learning environment design. In particular, facilitation should be an integral part of the embodied 

learning environment, in which learning is facilitated by situated and timely feedback. Since body cueing is one 

of the ways embodied interactions are prompted around learning content, it is a way to integrate students’ 

understanding of new knowledge with an embodied simulation (Lindgren, 2014). Therefore, it is critical to track 

students’ interactions with the learning environment and to design effective cues that facilitate productive whole-

body movements (Black et al., 2012; Lindgren & Johnson-Glenberg, 2013).  

 

Overall, certain temporal patterns using different simulation use measures can be used for early detection of 

students’ struggles throughout the process of exploring embodied activities within an XR learning environment 

such as ELASTIC3S. Advanced adaptive learning technologies may help to engage the learners with 

personalized prompts based on kinematic markers to enhance students’ cognitive activities in the process of 

learning. Most of the current studies in the area of embodied learning have been conducted in a laboratory 

environment (e.g., Lindgren & Johnson-Glenberg, 2013), where a researcher or teacher is present throughout the 

learning activities and provides a participant with just-in-time guidance whenever needed. Exploring potential 

features driven from multimodal data is critical in the future implementation of embodied learning environment 

in either a formal or informal setting (e.g., Ochoa, 2017).  

 

 

6. Limitations and future work 
 

This study has limitations that should be addressed in future research. First, the number of participants is notably 

small (n = 12). However, the Kinect logfiles contain a massive gesture dataset for each participant. This yielded 

the adequate amount of data (see Table 4) that represents valid and reliable behaviors of the participants, which 

allowed for the analyses we conducted in this study. In future work, we plan to include a larger sample to 

validate (1) whether the captured patterns are representative of the behaviors of a larger group and (2) the 

relationships between the patterns and learning performance. Second, it should be noted that we did not collect 

the participants’ academic background such as fields of study or previous experiences in STEM, while we 

recruited the participants from a general educational psychology course where the majority of students’ fields of 

study was not STEM.  

 

Third, we identified the cluster patterns including volume and speed features, which suggested their affective 

states such as confidence of using gesture rather than cognitive states. This needs further research to verify such 

a relationship. This also suggests interesting lines of follow-up inquiry on the causal relationship between 

kinematic features or gesture pattern trajectories and affective or cognitive states. Lastly, we extracted the 

simulation use variables by considering all joint information in one frame. There is a lot more nuance to 3-

dimensional metrics especially in spatial positions. Therefore, future studies should further explore other 

features, such as focusing on one joint for all frames or all joints and all frames, as each new feature will return 

different metrics and representations. We hope the volume features we used in this study are a good starting 

point for further exploration. The analytical approach used in this study indicates the potential of kinematic 

features as key indicators of the quality of learner perceptions and comprehension, and the potential need for 

gestural interaction guidance, which can further support their learning in other domains. 

 

 

7. Conclusion 
 

Previous studies have shown that the embodied learning simulation, ELASTIC3S, has an overall a positive 

impact on students’ understanding of content objectives and the crosscutting concept of non-linear growth. 

Those studies highlighted the critical features of embodied simulations that facilitate student reasoning. 

Technological advances in gesture recognition allow for the creation of XR environments that can track and 

respond to students’ gestures in real time. This study therefore investigated how the gestures learners perform in 

these environments relate to their subsequent learning, and how understanding the features of productive 

gestures can be applied to future embodied XR learning environment design. We applied multivariate Dynamic 

Time Warping for clustering to identify gestural patterns in ELASTIC3S as evidence for understanding learning 

processes. Our findings showed that identified patterns of simulation use were indicative of students’ 

comprehension and struggles with learning target ideas.  

 

The main contribution of this paper is to apply an underutilized analytical approach to understand students’ 

gestural interactions with embodied XR learning environments. Specifically, this study contributes to the early 
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work of detecting sequential gesture patterns that represent students’ embodied learning experiences by applying 

different data granularities (frame vs. gesture) and different levels of analysis (task, subsequence, and all tasks). 

Different levels of analyses applied in this study highlights the importance of considering various ways of 

structuring data, which can reveal more meaningful patterns of simulation use and serves as evidence of a more 

positive embodied learning experience. The results of this study pave the way for further research on the design 

of XR embodied simulation environments that provide real-time guidance and promote a more powerful and 

adaptive learning experience. 

 

We proposed potential kinematic features for personalized feedback that may facilitate students’ productive 

whole-body movements and learning. It is worth noting that future research including lager samples is needed to 

validate the present findings. We believe such analytical applications explored in this paper provide guidance for 

researchers to replicate or adapt when dealing with fine-grained time-series gesture data within XR embodied 

environments.  
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Appendix A: Sample questions from pre- and post-tests 
  

Conceptual Knowledge 

o What causes earthquakes? 

 

Exponential Knowledge 

o What happens to the amount of damage in a town if the earthquake goes from a magnitude of 7.2 to a 

magnitude of 8.2? 

 

Transfer Knowledge 

o I want you to imagine that you McDonald’s and Burger King are going to start opening restaurants in China. 

McDonald’s plans to open 3,000 restaurants every year for 12 years. Burger King is going to start with 1 

restaurant and then triple the number of restaurants every year for 12 years.  Which restaurant chain do you 

think will have the most restaurants in 12 years? 


