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ABSTRACT: This methodological-theoretical synergy provides an integrative framework of learning analytics 

through the development of the human-and-machine symbiotic reinforcement learning. The framework intends 

to address the challenges of the current learning analytics model, including a lack of internal validity, 

generalizability, immediacy, transferability, and interpretability for precision education. The proposed 

framework consists of a master component (the brain) and its four subsuming components: social networking, 

the smart classroom, the intelligent agent, and the dashboard. The brain component takes in and analyzes 

multimodal streams of student data from the other components with the model-based reinforcement learning, 

which forms policies of adequate actions that maximize the long-term rewards for both the human and machine 

in the seamless learning environment. An example case plan in advanced statistics was demonstrated to illustrate 

the course description, data collected in each component, and how the components meet different features of the 

smart learning environment to deliver precision education. An empirical demonstration was provided using some 

selected mulitmodal data to inform the effectiveness of the proposed framework. The human-and-machine 

symbiotic reinforcement learning has theoretical and practical implications for the next-generation learning 

analytics models and research. 
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1. Introduction 
 

The advent of Information and Communication Technologies (ICT) has yielded explosive and drastic changes in 

human thinking and decision making (Jordan & Mitchell, 2015). Among the technologies, Machine Learning 

(ML) is the core of artificial intelligence and data science; via supervised, unsupervised, or reinforcement 

learning, machines imitate human behavior and thinking and excel in an automatic recursive process (Jordan & 

Mitchell, 2015). ML’s affordance offers us insights into the advancement and development of the next 

generation of Learning Analytics (LA) to implement precision education (Wu et al., 2020). Mainly, precision 

education is “an approach to research and practice that is concerned with tailoring preventive and intervention 

practices to individuals based on the best available evidence” (p. 4, Cook et al., 2018). Whereas, LA is defined as 

using data from educational institutes to construct prediction models for improving the student learning process 

(Wu, 2020). More specifically, LA measures, gathers, analyzes and returns students data and information content 

in order for stakeholders of education to better investigate and understand the environment within and outside 

the learning entity where learning takes place for personalized feedback and instruction (Siemens & Baker, 

2012). Thus, harnessing the power of LA, precision education may be more promising and ready to benefit 

students and instructor in their learning and teaching with engaging, flexible, adaptive, and personalized 

diagnosis and intervention. Nevertheless, new challenges arise as to how artificial intelligence and ML can be 

well applied in LA to achieve precision education for capturing the heterogeneity among learners and facilitating 

students’ learning performance and instructors’ teaching quality (Yang, 2019).  

 

Notably, LA has been one of the most innovative areas to accomplish precision education with its leverage in the 

construction of prediction model and student learning database as well as the analysis of a vast amount of 

qualitative and quantitative multimodal data for personalized learning (Blikstein & Worsley, 2016). Despite the 

advantages, there are deficiencies in the current LA that may limit its application for precision education. These 

deficiencies include lacking in internal validity, immediacy/automated feedback, and generalizability. 

Specifically, the above-claimed effects of learning and teaching based on learning analytics are post-hoc in 

nature. The progress and application of the analytical results are not synchronous. Namely, the models or 

indicators obtained from the previous students can only be used or applied to the students in the next stage or 

generation, whereby lacking internal validity and failing to inform instructors of their students’ recent status. 
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Meanwhile, the result of learning analytics cannot be used for immediate and real-time diagnosis and automated 

feedback at the current stage, whereby lacking immediacy (Sedrakyan et al., 2018). Specifically, the criterion-

based validity check, usually using the students’ grades, limits the possibility to use all the available indicators 

and all possible actions exhaustively. As a result, it may hinder external validity and damage the generalizability 

of the LA model.  

 

Besides the constraints mentioned above, additional challenges for the current LA research include the 

transferability between the different learning systems and translation of the LA results to the instructor or 

practitioner’s language (Baker, 2019). Moreover, researchers have noted that learners’ lack of access to their 

learning data reduces their opportunities to make sense of their learning process and hinders their metacognition 

and self-regulation (Kitto et al., 2017; Wu, 2014; Wu & Peng, 2017). The limitations and constraints of the 

current learning analytics models mentioned above demand the attention of the LA research community for 

achieving precision education. 

 

This study intends to provide an integrative theoretical framework of learning analytics for precision education 

through the human-and-machine symbiotic reinforcement learning (RL). We contend that the RL can be the core 

application of the next-generation LA, namely LA2.0, to address the constraints of internal validity, 

generalizability, immediacy, transferability, and interpretability for the current state of learning analytics so that 

LA2.0 can be readily utilized to enhance precision education. Thus, we aim to answer two research questions:  

• What are the possible components in the integrative theoretical framework of learning analytics for 

precision education? 

• What is the efficiency of this proposed learning analytics framework in modeling learning performance for 

precision education? 

 

Below we provide the theoretical underpinning of the framework, including smart learning environment, 

learning analytics and reinforcement learning, and learning analytics 2.0: the framework for precision education.  

 

 

2. Literature review 
 

2.1. Building a smart learning environment for precision education based on the affordance of adaptive 

technologies  

 

Smart Learning Environment (SLE) is built upon adaptive technologies that satisfy learners of different 

backgrounds and engage them in context-aware learning activities that suit their goals (Spector, 2014). In higher 

education, social media is one of the applications of adaptive technologies that enable learners to create their 

unique Personal Learning Environment (PLE, Dabbagh & Kitsantas, 2012; Wu, 2017). Premised on social 

media, the PLE encompasses Learning Management Systems (LMS, e.g., Moodle, Canvas, or Blackboard) and 

thus is more open and flexible than the close systems. Learners can create their PLE using various applications: 

blogs, wikis, google apps/calendars, dropbox, YouTube/Flickr, etc. to achieve their learning goals considering 

their interests, preferences, emotions, and attitudes. Learners can also share, communicate, and collaborate by 

extending their PLE to form a personal learning network or community with experts and more knowledgeable 

peers. Despite PLE’s advantages, people’s limited attention resources are significantly challenged by fun and 

exciting events and activities, such as friends’ tweets, photos, fun games, and videos (Wu, Online first; Wu & 

Xie, 2018). Thus, learning premised on social media may be a double-edged sword due to students’ distracted 

attention and poor self-regulatory strategies (Wu, 2015, 2017; Wu & Cheng, 2019). These external threats in the 

PLE create an urgency to build an SLE with analytical evidence for students’ autonomous and self-directed 

learning. An SLE should be able to engage students in learning with its technological affordance and meanwhile 

facilitate students to plan and monitor their learning progress actively. 

 

The extent of an SLE can be categorized by its necessary, strongly desired, and likely features (Spector, 2014). 

Necessary features imply that the SLE should have evidence to support its effectiveness and efficiency for 

students’ autonomous learning based on diverse and large-scale samples. In terms of the highly desired, 

engaging, flexible, adaptive, and personalized are the four main features. The SLE may be engaging in arousing 

and maintaining students’ motivation, attention and engagement. Meanwhile, it can be flexible to accommodate 

changes in the course (e.g., adding new members, changes in learning goals) and being adaptive to students’ 

abilities, interests, or cognitive styles to provide personalized instruction and feedback for those falling behind or 

progressing ahead. The necessary and highly desired features can benefit from the affordances of Web 2.0 and 

Web 3.0. Students can actively create their responses and construct knowledge schema with their peers and the 

instructor synchronously or asynchronously, with the teacher orchestrating and coordinating students’ 
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collaboration (Gerstein, 2014). Based on connectivism theorized by Siemens (2005), teaching and learning may 

represent a combination of numerous activities and networked and interwoven complex relationships. When 

students share information or post/reply questions and comments by interacting with peers or instructors, they 

connect their current state of knowledge to form knowledge between ideas, concepts, and domains via 

specialized nodes and information sources (Wu & Nian, 2021). Thus, built on connectivism (Siemens, 2005), 

learners of Web 3.0 applications can be creators of content knowledge. They can share their intellectual artifacts 

with others in networked learning and connect resources, persons, communities, and applications/tools relevant 

to their learning via the far-reaching web (Berners-Lee et al., 2001). Under this scenario, learning is highly 

autonomous and self-determined, with teachers taking the role of a coach or cheerleader (Gerstein, 2014).  

 

As for Web 4.0., researchers suggest a symbiotic web where humans and machines have an interdependent and 

coexisting relationship (Gamberini & Spagnolli, 2016). The concept of human-machine symbiotic relations 

offers immense possibilities for human learning. In light of Spector’s likely features for an SLE: conversational, 

reflective, innovative, and self-organizing, we envision that the SLE built upon the affordances of Web 4.0 can 

engage learners in dialogs for problem-solving, create learning progress reports for students’ evaluation of their 

performance, use technologies in innovative ways to support students’ learning, and help improve students’ 

performance over time by automatically managing resources and collecting/analyzing data from the learning 

ecology. To implement these likely features in the SLE requires comprehensive and penetrating learning 

analytics encompassing all possible aspects of data about students’ learning. Below we discuss the now and 

future of learning analytics regarding its role in the SLE.  

 

 

2.2. Learning analytics and reinforcement learning  

 

LA’s ultimate purpose is to provide precision education for individualized instruction and feedback to enhance 

students’ motivation and achievement with student-related data gathered from multiple sources (Romero & 

Ventura, 2020; Siemens & Baker, 2012). Nevertheless, the current LA models may constrain their use for such 

purposes. Specifically, the current LA studies are mostly using off-line training data for prediction based on 

static models (Nishihara et al., 2017). They cannot provide real-time and immediate feedback or support to 

facilitate student learning due to programming flexibility and performance limitations. Reinforcement Learning 

(RL), a broader paradigm of machine learning, may address the constraints mentioned above. RL can fuse and 

react to multiple sensory data from various input streams, conduct micro-simulations continuously, and figure 

out the next step (Nishihara et al., 2017). Compared with other machine learning algorithms, RL focuses more on 

goal-directed learning via interacting with the environment (Sutton & Barto, 2018). The robot has clear goals, 

perceives the environment, and selects an action to respond to or change the environment. RL differs from 

supervised or unsupervised learning because it learns the behavior based on the feedback obtained from 

iteratively interacting with the environment. Thus, RL resembles the conditioning learning of humans or animals 

(Sutton & Barto, 2018) to master the skill. The RL-based agent/robot applies the concept of “reinforcement” in 

behaviorism, where humans make decisions based on the state of the current environment and select the 

corresponding action. Once the environment rewards them, they may maintain and adjust their policy to 

maximize their long-term reward.  

 

There are four elements in the RL: policy, reward signal, value function, and model (Sutton & Barto, 2018). The 

policy perpetuates the RL robot’s action with the standard strategy to maximize the value function. The reward 

signal is the value obtained by the RL robot from the environment to evaluate its action’s performance. The 

value function is the RL robot’s expected values/rewards across all the possible actions; the RL robot obtains its 

value function by continually updating with the latest parameters. Before the RL robot executes its action, 

models could help predict what reward the environment may give to decide its strategy use. A model-free RL 

robot can be used for explicit trial-and-error searches (van Otterlo & Wiering, 2012). Alternatively, mode-based 

RL agents can be applied to reflect the action that gains more weights in reward from the environment (Hester & 

Stone, 2012). This study proposed the human-machine symbiotic learning analytics framework based on the 

mode-based RL algorithm as an updated version of the current learning analytics model. The framework may be 

able to bolster the likely features in the SLE for conversational, reflective, and self-organizing and innovative 

learning via its low latency and high throughput to support online simulations and the streaming sensory input 

(Nishihara et al., 2017).   
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3. Learning analytics 2.0: The framework for precision education  
 

This study aims to address the problems and constraints of the current Learning Analytics to construct a human-

machine symbiotic reinforcement learning framework for precision education. A summary of aspects that entail 

the human-machine symbiotic relationship is exhibited in Table 1. Specifically, humans can provide rules to 

supplement the building of domain knowledge and just-in-time information to ease the computational 

complexity with more efficient and effective training results (Sutton & Barto, 2018). Humans can also 

collaborate with the RL robot by providing adversarial training for valid value evaluations to gain maximum 

rewards despite extensive simulation training (Pinto et al., 2017). In terms of the distinct style of knowledge 

building, the result of machine learning training is complex and is rendered powerless unless it can be interpreted 

by human experts (Vellido et al., 2012). Thus, the learning analytics results with experts’ input can be displayed 

via interactive visualization and dashboards to provide learners and instructors with meaningful interpretation 

(Aljohani et al., 2019). Moreover, as experts, humans can provide domain knowledge regarding RL’s 

susceptibility to partial information (Abbeel & Ng, 2004).  

 

Table 1. The symbiotic relationship between the machine (the RL algorithm) and human 

Aspects that entail the 

symbiotic relationship 

What RL can do Constraints of RL How humans can collaborate 

with RL 

The domain of 

knowledge building 

Needs no 

instruction/knowledge. 

Rules needed Provide rules 

Speed of computation Trial-and-error achieved 

in seconds. 

 

Not a fast learner 

without 

supercomputers due 

to computational 

complexity 

Provide just-in-time 

information to help the RL 

learn faster 

The capability of 

knowledge building 

AIs with RL generate 

their knowledge. 

Need valid value 

evaluation 

Provide adversarial training 

for valid value evaluation 

Distinct styles of 

knowledge building 

Has its style of 

knowledge building. 

 

Difficult to be 

explained 

Interactive visualization and 

dashboard display based on 

suggested actions and 

estimated rewards 

Susceptibility to partial 

information 

Could be generalized to 

other situations. 

 

Not effective with only 

partial information 

Serve as an expert or a 

community of experts to 

provide domain 

knowledge. 
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Figure 1. The integrative framework of the human-machine symbiotic learning within the smart learning 

environment 
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Harnessing the power of RL, we propose an integrative LA framework for precision education, consisting of five 

components. We illustrate the association of the five components as shown in Figure 1 and elaborate on the 

functionality of the components in the following subsections. 

 

 

3.1. The brain component 

 

The brain is the master component based on connectivism (Siemens, 2005) and RL (Sutton & Barto, 2018). With 

analytical techniques (e.g., statistics, data mining, supervised/non-supervised machine learning techniques), the 

brain takes in multimodal streams of students’ data in the hybrid seamless instructional settings to build the 

human-machine symbiotic learning model. The information streams may include automated coding of 

supervised data and model-free data and metadata (e.g., the number of messages and comments posted on the 

wall) from the social network component, class attendance, facial expression, physical movement, physiological 

signals, and instant assessment responses from the smart-classroom instruction component, conversations, and 

dialogs from the intelligent agent component, and human-computer interactions and information-exchanging 

visualizations from the dashboard component (e.g., students set goals and regulate their learning based on 

dashboard feedbacks). 

 

The brain establishes policies to select an action in response to the learning environment with strategies that 

maximize the value function for the greatest reward; the reward would then inform the brain of the result of the 

action in a recursive manner for self-organizing. The brain component is designed with 1) low latency and high 

throughput, 2) dynamic task creation, heterogeneous tasks, and arbitrary dataflow dependencies, and 3) 

transparent fault tolerance and debuggability and profiling to meet the performance, execution, and practical 

requirement of emerging real-time machine learning (Nishihara et al., 2017).    

 

 

3.2. The social networking component 

 

The second component is the social networking component characterized by students’ cognitive, affective, and 

social artifacts created on social media (Lee & Wu, 2013). Specifically, the context of social media use or what 

and how students are using social media plays a significant role in students’ outcomes. Researchers exhibited 

that students with messages and posts endorsed by two or more robots as statistics-relevant had higher final 

course grades; moreover, students failing the course had significantly fewer messages endorsed by three robots 

as statistics-relevant than those who passed (Wu et al., 2020). Therefore, content or the interaction context is the 

core element that may predict students’ performance in social networked learning. Moreover, social presence or 

the ability to perceive others in the online learning environment is also associated with learners’ satisfaction and 

perceived learning (Dabbagh & Kitsantas, 2012). Thus, learners’ posts and comments among peers and 

instructors and their reactions to others’ messages (i.e., emojis, or the buttons of Like, Haha, Love, Wow, Sad or 

Angry) are essential cognitive and affective artifacts in social networked learning.  

 

By using both supervised text classification and RL enabled student data streaming, the social network 

component has the potential to classify learners’ messages based on the cognitive level or sentiment analysis 

(Cambria et al., 2017) and send those data along with the metadata (e.g., Facebook reactions) on the social media 

in real-time to the brain component in order to construct policies in response to the dynamic environment for 

maximum reward in learning.  

 

 

3.3. The smart classroom component 

 

The third component is the smart classroom component. It focuses on the observation, monitoring, and 

interaction among peers and instructors and pedagogical adjustment in the face-to-face classroom using 

multimodal data for learning analytics. Grounded in connectivism (Siemens, 2005), learning resides in the 

exchanges of diverse opinions. In the classroom setting, learners can learn from reciprocal inquiry and dialectic 

learning with their peers and instructors. However, in higher education, the class size causes a barrier in the 

teacher-student interaction, with negative correlates such as higher dropout rate and retention (Bettinger & Long, 

2018). Student response systems (SRS) can improve students’ learning, motivation, and engagement and bring 

more opportunities to improve discussion and interaction between students and teachers and among students for 

educational purposes (Wu et al., 2019). By implementing formative assessments via SRS adaptively according to 

the analytical result streamed back from the brain component, the instructors can identify misconceptions in 
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students learning and provide immediate scaffolds or direct explanations on the idea. Besides, students’ opinions 

can be more openly expressed via SRS against conformity or shyness. 

 

In addition to students’ responses to the formative assessment via SRS, their facial expressions, physical 

movements, and physiological signals (e.g., skin conductance and brainwaves) may also be recognized to detect 

their learning emotions. Advances in machine learning have made real-time facial expression recognition of 

emotions feasible. Using automated recognition of facial recognition, researchers found that students’ upper face 

movements are related to engagement, frustration, and learning, while mouth dimpling positively predicts 

learning and self-reported performance (Grafsgaard et al., 2013). Real-time facial and head gesture recognition 

can also successfully identify students sleeping, yawning, and smiling as well as nodding, shaking, and tilting 

with high accuracy (Deshmukh et al., 2018). Besides, in face biometric systems, the non-contact algorithms have 

been carried out for virtually physiological signal detection, e.g., pulse rate registration, directly from face 

images captured from motion videos (Lewandowska et al., 2011). Moreover, students’ physiological signals 

such as skin conductance also exhibited a positive correlation with their self-reported mental efforts in solving 

ill-structured problems (Larmuseau et al., 2019). These non-verbal signals can provide the instructor with 

valuable information about students’ attentional and cognitive states, engagement, and motivation for the 

instructor’s pedagogical adjustment to facilitate students’ learning and help manage student attendance (Kar et 

al., 2012).  

 

Students’ responses via SRS, facial, physical movements, and physiological signals can also be coded, classified, 

and preprocessed by edge computing mobiles and terminals (Shi et al., 2016). The coded responses can be sent 

to the brain component via the streaming technology to establish, maintain, or adjust policy for obtaining the 

maximum reward.   

 

 

3.4. The intelligent agent component  

 

The fourth component is the intelligent agent component. Though the instructor and peers can interact with the 

learner and exchange ideas and opinions, the time and space constraints would limit the currency of knowledge 

creation and co-construction. To address the possible limitation of failing to provide just-in-time feedback and 

scaffolds, we propose the intelligent agent component that can work as a bridge in the relationship among the 

content, peer, and the instructor for knowledge transfer and creation. Intelligent agents are applications of 

artificial intelligence built upon machine learning and natural language processing for personal, conversational, 

and engaging ways of learning. Intelligent agents can serve as the role of the more knowledgeable other in the 

zone of proximal development (Vygotsky, 1987) to assist in completing the task, answering conceptual 

questions, or prompting learners’ reflection or metacognition in a conversational way. Nonetheless, most 

intelligent agents are still based on fixed rules and may not provide feedbacks given students’ characteristics and 

needs (e.g., Pereira, 2016).  

 

RL and task-based design empower the proposed intelligent agent component. It uses streaming student data 

from the brain component, the social networking component, and the smart classroom component to provide 

real-time scaffolding on students’ misconceptions and guide students’ critical thinking to achieve their learning 

goal. The conversation, dialogs, and interaction between the learners and intelligent agents can also be exported 

to the brain component to improve the human-machine symbiotic reinforcement learning mechanism.  

 

 

3.5. The dashboard component 

 

The fifth component is the dashboard component, which is in charge of multiple sensory data gathering, 

cleaning, storage, and management and visualizing each student’s learning profile. Research has documented the 

advantages of the learning analytic dashboards, such as to identify students’ role in online learning or their 

interaction with others (Ferguson & Shum, 2012), to enhance the adviser-student dialog via visualizing the study 

progress and comparison with peers for discussion and argumentation (Charleer et al., 2018), and to support 

students’ self-regulated learning with corresponding features of self-monitoring and self-assessment 

complemented with customized feedbacks (Schumacher & Ifenthaler, 2018). Students can also compare their 

class participation and performance with the class’s average performance or the best-achieving students by 

available factors (Aljohani et al., 2019). Linking the learning analytics dashboard display with learning science 

concepts, researchers propose that the dashboard design should help students in the planning, performance, and 

adaption phases of their learning (Sedrakyan et al., 2018). Nevertheless, there are still challenges for the learning 

analytics dashboard design, including 1) difficulty in modeling the dynamics of learning, 2) failure to taking into 
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account of learner characteristics, 3) limitation in the modality of student data, and 4) inclusion of student data 

from a single platform (Sedrakyan et al., 2018).  

 

The current study proposes a human-machine symbiotic reinforcement learning framework using the fine-

grained and accumulated learning progress data to investigate and predict students’ next-stage action based on 

their previous moves. Therefore, it may help resolve the problem of lacking internal validity and avoid providing 

feedback based on the previous sample’s data to the students of the ongoing section. 

 

 

4. Empirical demonstration and discussion 
 

This section provided an example course plan in a graduate-level advanced statistics course to depict the 

integrative theoretical framework. As a demonstration for the proposed integrative LA framework, we then 

conducted an empirical analysis with available data from the four subsuming components obtained from an 

advanced statistics course. Though the analytical model reported here was still post-hoc in nature, we can 

envision the development of a human-machine symbiotic learning when all the multimodal multiple-source data 

are incorporated and streamed to the brain component. The brain, which is powered by the RL mechanism and 

statistical modeling, can then establish real-time policy and decision making for precision education.  

 

 

4.1. Description of the components in the example case plan 

 

In response to our first research question, we described the course component and data that can be collected in 

each component to demonstrate how each component meets different features of a smart learning environment 

for precision education in Table 2. The brain’s primary function is to establish policies with strategies that 

maximize value functions for the greatest reward and meet the performance, execution, and practical 

requirement of reinforcement learning (Nishihara et al., 2017) so that it can coordinate all the components in the 

integrative framework. Specifically, the advanced statistics instructor can design the course using a flipped 

learning approach; therefore, in the social networking component, students can preview the course videos on 

Youtube or LMS before the class. Students can also review the video lectures afterward based on their study 

pace. The instructor creates a statistics learning Facebook group to share information and seek help via posts and 

comments for seamless learning and self-regulation.  

 

Table 2. The sample case of an integrative framework of the human-machine symbiotic learning within the smart 

learning environment 

The Master 

component 

The Brain Component 

• Built upon the smart learning environment (Spector, 2014), connectivism (Siemens, 2005) and 

the RL algorithm (Sutton & Barto, 2018) 

• Receive multimodal streams of students’ data  

• Develop the human-machine symbiotic learning model 

Subsuming 

Components 

The social networking 

component 

The smart classroom 

component 

The intelligent 

agent component 

The dashboard component 

Course 

component 

description  

• Before/after the 

class: The instructor 

provides course 

videos for 

previewing. 

Students can review 

the video if 

necessary. 

• Before/during/after 

the class: Students 

are encouraged to 

share information 

and seek help via 

the Facebook group 

for seamless 

learning and self-

regulation. 

• During the class: 

The instructor 

integrates the 

student response 

system (e.g., 

Kahoot!) for 

quizzes to monitor 

students’ 

comprehension of 

the statistics 

concepts.  

• Students’ facial 

expressions, 

physical 

movement, and 

physiological 

signals can be 

recorded and 

The intelligent 

agent is a 

students’ 

personalized 

tutor that can 

address each 

student’s 

specific needs or 

statistics 

misconceptions 

based on his/her 

familiarity with 

the course 

materials, e.g., 

performance on 

the student 

response system, 

posts/comments 

The dashboard displays 

students’ statistics 

learning progress across 

different platforms (e.g., 

amount of video viewing, 

discussion participation, 

interaction among peer, 

weekly quiz 

performance). It takes 

information from all the 

previous components 

plus additional 

psychological 

assessments to tailor 

each student’s learning 

program. Students are 

allowed to set their 

learning goals. 
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transmitted to the 

brain component 

for instant 

recognition of 

students’ attention 

and emotional 

status toward a 

specific concept of 

statistics learning. 

on the Facebook 

group, and 

classroom 

engagement. 

Automated and 

individualized feedbacks 

are given considering all 

available student pre-

existing conditions. 

Data 

collected 

Course video viewing 

time on LMS and 

posts, comments, and 

reactions (emojis) on 

the Facebook group 

Students’ instant 

responses to the test 

items, facial 

expression, physical 

movement, 

physiological signals 

All available data 

from the social 

networking 

component and 

the smart 

classroom 

component 

All available data from the 

social networking 

component, the smart 

classroom component, and 

the intelligent tutor 

component plus 

psychological assessments 

of students’ learning 

preferences, strategies, 

and habits, etc. 

Features of 

smart 

learning 

environment 

Necessary features: 

scalable, effective, 

efficient, and 

autonomous. 

Highly desired 

features: engaging, 

flexible, adaptive, 

and personalized 

Likely: 

conversational, 

reflective, 

innovative, and 

self-organizing 

Likely: conversational, 

reflective, innovative, and 

self-organizing 

 

In the smart classroom component, the instructor can create a quiz bank using the gamified student response 

system (e.g., Kahoot!) and adaptively use the quiz items based on the brain component’s action to monitor 

students’ comprehension of the statistics concepts. Students’ facial expression (e.g., yawn, frown), physical 

movement (e.g., stretch, sleep), physiological signals (e.g., pulse, skin conductance, brainwaves) can be 

recorded. The signals can then be transmitted to the brain component for instant recognition or automated 

classification of students’ attention and emotion status (e.g., frustrated, confused, happy, bored, or stressful) 

toward a specific concept of statistics learning. The use of the student response system was shown to increase 

student engagement in the class. Moreover, instant automated classification of student-related signals can allow 

the instructor to provide flexible, adaptive, and personalized feedback for each student and ease the instructor’s 

cognitive load given a large class size (Stowell et al., 2010).   

 

The intelligent agent component is designed based on rules and all available information from the social 

networking component and the smart classroom component. Thus, students’ personalized tutor can address each 

student’s specific needs or statistics misconceptions based on his/her unique records. The personal records 

consist of students’ familiarity with the course materials (course video viewing time), performance on the 

student response system, posts/comments on the Facebook group, and classroom engagement. For example, a 

student may get a quiz item wrong in the class, or ask for clarification about statistics concept on the Facebook 

group. Then, the intelligent agent would notice the student’s possible weaknesses and provide relevant 

materials/concepts/questions of different difficulty levels for the student to think or work on and scaffold the 

learning process. The intelligent agent is an innovative technology that can form a conversational and reflective 

way of learning and is capable of self-organizing the learning materials and sequences.  

 

The dashboard component displays students’ statistics learning progress across different platforms (e.g., amount 

of video viewing, discussion participation, interaction among peer, weekly quiz performance). It takes 

information from all the previous components plus additional psychological assessments (e.g., Internet use habits 

and epistemic beliefs (Lee, 2018, 2021)) to tailor each student’s learning program better. Students are allowed to 

set their learning goals and regulate their learning using the dashboard components (Sedrakyan et al., 2018). 

Automated and individualized feedbacks for goal-setting or self-regulation are given considering all available 

student pre-existing conditions. The feedback distribution algorithm is based on the RL policy that yields the 

most considerable reward and can avoid students’ unrealistic goal-setting or self-evaluation (too high or low) and 

help them self-regulate their learning. The student learning profiles provided by the dashboard can also be used 

by the instructor to adjust their course plan and teaching strategies. 
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4.2. The empirical demonstration of an LA based on an actual course 

 

In response to our second research question, we simulated a prediction model in the brain component on 

students’ learning performance to test the efficiency of the LA model. Specifically, we modelled the prediction 

effectiveness of an LA based on some selected multimodal and multiple-source data from an actual course. 

Participants were 23 graduate students taking an advanced statistics course. In the social networking component, 

the duration of each individual’s time spent on each part of a video lecture was recorded, including the time 

paused and replayed. Students also provided ratings of their perceived help-seeking desire and help-providing 

capability, as well as a brief reflection of what they have learned and they wanted to share after viewing the 

lecture videos. Moreover, students’ posts and comments on the Facebook group were classified into statistics 

relevant or irrelevant using supervised machine learning (Wu et al., 2020). In the future, we hope to replace the 

classification process by the RL with expert’s rule to establish real-time policies and provide immediate 

personalized feedback. Further, in the smart learning classroom, students’ responses to the in-class quizzes was 

recorded using the gamified instant response system (i.e., Kahoot!). We created a proxy variable for the 

intelligent agent component by dividing the number of responses a student received from the instructional team 

by the total messages the students posted. The proxy variable may function similarly as the adaptive tutoring 

when a student signals the need for help. The proxy variable was created in place of the personalized feedback in 

the intelligent agent component for demonstration purposes; however, it only considered feedback received from 

the instructor and teaching assistants. Thus, more research is needed to advance the development of intelligent 

agents based on rules and multimodal and multiple-source inputs.  

 

As a visualization to help students’ self-regulation, we built a dashboard based on students’ video viewing and 

perception/reflection data. As illustrated in Figure 2, the dashboard presented the duration of each lecture, the 

average students’ time spent viewing each lecture, and the number of students who watched the video on the 

upper left-hand side. On the upper right-hand side, the pie charts presented the percentages of students in terms 

of the degree of their perceived help-seeking desire and help-providing capability. The bottom left-hand side and 

bottom-right hand sides exhibited all students’ qualitative accounts of their brief learning reflection and 

perception about the lectures, respectively. The visualizations can be provided to students on a weekly basis; 

thus, the dashboards may enhance students’ understanding of their learning in comparison to the whole class for 

goal-setting and self-regulation. Instructors can also use the learning analytics dashboards to monitor each 

student’ learning progress over time and identify students who are in need of help at the earliest stage to prevent 

them from falling behind or failing the course. 

 

 

• There’s even a space before “Orc”. If TA hadn’t mentioned that, I would 

have to waste a lot of time for debugging my code.

• The ultimate purpose of regression is the effective prediction that does not 

need to wait for the results to be read out.

• Multiple Regression is different from simple linear regression. More 

independent variables are added in while the dependent variable remains to 

be only one.

• Regression + residual = real data. We should focus on the standardized 

regression coefficient. Under the consideration of theory, it’s better to put 

more than only one meaningful independent variables into the regression 

model. To some extent, it represents a more realistic model.

• The larger the tolerance, the better the model. On the other hand, the smaller 

the VIF, the better the model. 

• SStotal = SSregression + Sserror . We should refer the standardized coefficients.

• It’s interesting~~

• (Blank)

• I’m still confused about the post-hoc after the linear regression 

analysis as shown on page.12 in the handout.

• It’s so great that I can adjust the video to a faster speed. When it 

comes to the film quality, however, it only provides 480p, which 

is a bit obscure.

• (Blank)

• Not yet, I’m still digesting the knowledge.

• I’m in favor of this topic. I believe it’s very useful.

• I have to rush to the next video. Bye~

• I still can’t understand the concept about the collinearity. Hope 

there will be more explanation in the future.

• Good job. Very clearly.
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Figure 2. The illustration of a learning analytics dashboard 

 

To simulate the analytical functioning of the brain component, we constructed a regression model using the 

multimodal and multiple-source data described above in predicting students’ final course grades, controlling for 

students’ gender and prior knowledge in statistics. The regression result was shown in Table 3. Students’ prior 
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knowledge, in-class quizzes (Kahoot!), the number of messages classified by the ML as relevant, and their 

perceived help-seeking desire were associated with higher final course grades with statistical significance. The 

model explained 80.83% of the variance (adjusted R2) in the scores of the final course grades.  

 

The empirical demonstration provided an initial exploration of the multimodal data from different components of 

the LA framework in predicting learning achievement. To yield internal validity and immediacy in personalized 

feedback in the future, the multimodal data can be collected on a weekly basis (or a more fine-grained time 

period) to form and adjust the RL policies based on students’ subsequent formative assessments (e.g., in-class 

quizzes, midterm, or homework) and expert feedback. The policies can then be used for classification or 

association of students’ learning progress for decision making, such as signaling of wheel-spinning or at-risk of 

failing.  

 

The empirical demonstration based on an actual course had implications for precision education. First, learners’ 

prior knowledge explained a significant portion of their final course grades. Understanding learners’ initial level 

of the content knowledge can inform the instructor of students who are more likely to need assistance. Next, the 

Kahoot quizzes and ML classified messages provided additional clues regarding students’ learning progress as 

the semester course went. Learners’ with poorer quiz scores and fewer messages endorsed by the ML algorithm 

may flag at risk of academic failure. Finally, learners’ help-seeking tendency may represent their desire to close 

their knowledge gap. Whereas, those with low help-seeking tendency may signal a reactive learning attitude, and 

thus, may require more instructor’s attention and assistance. Suggestions can then be made to inform instructors 

of personalized intervention and enhance students’ understanding of their learning for self-regulation and goal-

setting in an automatic process. The analytical findings are promising and warrant the advancement of LA2.0 for 

precision education. 

 

Table 3. The multiple regression analysis with multimodal inputs on students’ final course grades 

 B SE  t p VIF 

(Constant) 3.773 12.052  0.313 .758  

Male 2.765 1.904 0.138 1.452 .164 1.171 

Prior Knowledge 0.234 0.088 0.310 2.644 .016* 1.784 

Kahoot! 0.565 0.127 0.634 4.469 <.001** 2.615 

ML_classified Message 0.375 0.135 0.279 2.775 .012* 1.313 

Proxy_intelligent agent -0.025 0.064 -0.038 -0.392 .699 1.204 

Help seeking 3.912 1.805 0.255 2.167 .044* 1.792 

Help providing 2.828 1.488 0.181 1.901 .073 1.175 

Note. *p < .05; **p < .01. 

 

 

5. Conclusion 
 

Learning Analytics is one of the emerging learning technologies that apply learner-generated data and all other 

related information to provide personalized instruction and help learners adapt their learning in the technology-

enhanced environment. The proposed human-and-machine symbiotic reinforcement learning has both theoretical 

and practical implications for the next-generation learning analytics models to implement precision education. 

From a theoretical perspective, the integrative Learning Analytics framework premised on the RL mechanism 

with human expert input (i.e., model-based RL) addresses the RL algorithm’s limitations by providing rules and 

just-in-time human expert knowledge exchange. Therefore, RL robots can learn faster without the need for 

domain knowledge and computation with supercomputers. Valid value evaluations meaningful to humans can 

also be achieved by providing adversarial training for the RL robot to take appropriate policies of a series of 

actions to gain the maximum reward (Pinto et al., 2017). As experts, humans can also provide domain 

knowledge to train the robot to master a new domain learning to avoid local minimum due to its access to only 

the partial information (Abbeel & Ng, 2004). Moreover, experts can also provide models for the RL robot to 

learn by itself (Hester & Stone, 2012).  

 

This study addressed the current learning analytics models’ challenges and proposed solutions for precision 

education. Thus, from a practical perspective, the theoretical advances made the proposed LA2.0 possible for 

precision education by allowing the brain component with the RL algorithm and statistics model to take in 

multimodal student data streams from its subsuming components for real-time policy establishment and gain the 

maximum reward based on a series of actions. Subsequently, automated feedback, or scaffolds can be 

supplemented to the students depending on their individual learning needs, through the RL’s dynamic task 

creation, heterogeneous task deployment, and arbitrary data flow dependencies. After that, the lack of internal 
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validity and immediacy issues can be resolved. The brain component collects learner characteristics data from 

multiple sources (e.g., psychological assessments, observations, and conversation log) across platforms and 

creates dynamic and heterogeneous tasks for the RL’s self-learning. As a result, the learning analytics model can 

be generalizable to different samples using various criteria. Besides, the RL mechanism can fuse and respond to 

multiple sensory data from various input streams. Thus, learner data from one platform can be transferred to 

another to consider the personalized feedback generation and adaptive course recommendation, targeting each 

individual for goal-setting and self-regulation. 

 

The learning analytics results are displayed via the dashboard component about learners’ learning progress and 

that of the machine with sensible feedback and suggestions for achieving the learner and the machine’s best 

learning performance. By recognizing and supporting the varied challenges of the current learning analytics 

model, the proposed integrative LA2.0 framework can fulfill LA’s potential to provide personalized and just-in-

time high-quality learning for precision education.  

 

This study provided a promising integrative framework of human-and-machine symbiotic learning to inform the 

next-generation learning analytics models with theoretical and empirical supports. As a caveat, issues such as 

data format compatibility, data privacy, and information security may cause additional challenges for educational 

data mining due to significant differences in data privacy and information sharing mechanisms between data 

producers and data consumers (Wu et al., 2014). Aside from those, the proposed framework can address the 

challenges of the current learning analytics models to support precision education.  
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